CAREER: Atomistic Simulations of Enzymatic Modulation of Long-Timescale Biomolecular Switches

职业:长时标生物分子开关酶促调节的原子模拟

基本信息

项目摘要

Sub-cellular signaling processes generally involve recognition and transient interactions between biomolecules and switching of conformations. These signaling processes, at times, occur over very long timescales (seconds to minutes). For the on-off signaling to take place at biologically relevant timescales (milliseconds), nature has provided enzymes to catalyze and increase the rates of these processes. One of the major challenges in computational biophysics is describing, at the atomistic detail, biomolecular events that are beyond the microsecond timescale. This project takes advantage of an accelerated molecular dynamics simulation method developed by the principle investigator (PI) to access long timescale events and fully model the enzymatic mechanism of peptidyl prolyl cis-trans isomerases (PPIases). PPIases are a class of ubiquitous enzymes that catalyze the notoriously slow cis-trans switching of the prolyl peptide bond of their protein substrates in many important signaling pathways. The goal of this CAREER project is to investigate the conformational transitions of cis-trans biomolecular switches, including the phosphorylation dependent cis-trans switches, and the associated mechanistic role of PPIases. Experiments have provided wealth of structural insights and kinetic information on PPIases, but they have not been able to provide a complete picture of the mechanism at the atomistic level. Direct observations at this level are hard to achieve with current experimental techniques. As a result, the mechanism of action of PPIases that is required for better understanding of certain sub-cellular processes has been elusive and controversial.This CAREER project will have broad impacts in fundamental research as well as scientific training. By unraveling the atomistic details of biomolecular switching mechanisms and the accompanying protein dynamics, a better understanding of the inner workings of molecular machines at the physicochemical level will be achieved. And at a higher level, this will undoubtedly illuminate how cellular signaling takes place under normal and aberrant conditions. Also, the knowledge gained from this project will allow the PI to make testable hypotheses and to ask specific questions that can then be addressed experimentally. More importantly, this project provides an excellent opportunity to attract and train the next generation of scientists. Computational chemistry cuts across many disciplines, including chemistry, biology, physics, mathematics, and computer science, and therefore, provides an excellent tool for attracting students into the sciences. An advantage of computational chemistry in teaching is the fact that dynamic atomistic and molecular descriptions of concepts that would otherwise seem abstract can be made understandable. In addition to training undergraduate and graduate students, this project will allow the PI to expose high school students to scientific research in a safe environment and reach out to high school and middle school students through a well-established Bio-Bus outreach program at Georgia State University. This outreach program will help to raise scientific literacy amongst school-aged children and provide access to a larger audience, especially those in school districts with underrepresented minorities in science and engineering.
亚细胞信号传导过程通常涉及生物分子之间的识别和瞬时相互作用以及构象转换。这些信号过程有时会发生在很长的时间尺度上(几秒到几分钟)。为了使开关信号在生物学相关的时间尺度(毫秒)发生,大自然提供了酶来催化和增加这些过程的速率。计算生物物理学的主要挑战之一是在原子细节上描述超越微秒时间尺度的生物分子事件。该项目利用主要研究者(PI)开发的加速分子动力学模拟方法来访问长时间尺度事件,并完全模拟肽基脯氨酰顺反异构酶(PPIases)的酶促机制。PPIases是一类普遍存在的酶,其在许多重要的信号传导途径中催化其蛋白质底物的脯氨酰肽键的缓慢顺-反转换。这个CAREER项目的目标是研究顺式-反式生物分子开关的构象转变,包括磷酸化依赖的顺式-反式开关,以及PPIases的相关机制作用。实验提供了丰富的结构见解和动力学信息的PPIases,但他们还没有能够提供一个完整的图片在原子水平的机制。用目前的实验技术很难在这一水平上进行直接观测。因此,更好地理解某些亚细胞过程所需的PPIases的作用机制一直是难以捉摸和有争议的。这个CAREER项目将在基础研究和科学培训方面产生广泛的影响。通过解开生物分子开关机制和伴随的蛋白质动力学的原子细节,将实现在物理化学水平上更好地理解分子机器的内部工作。在更高的水平上,这无疑将阐明细胞信号在正常和异常条件下如何发生。此外,从这个项目中获得的知识将允许PI做出可验证的假设,并提出可以通过实验解决的具体问题。更重要的是,该项目提供了吸引和培养下一代科学家的绝佳机会。计算化学跨越许多学科,包括化学,生物学,物理学,数学和计算机科学,因此,为吸引学生进入科学提供了一个很好的工具。计算化学在教学中的一个优点是,可以使那些看起来抽象的概念的动态原子和分子描述变得可以理解。除了培训本科生和研究生外,该项目还将使PI能够让高中生在安全的环境中进行科学研究,并通过格鲁吉亚州立大学完善的生物巴士外展计划接触高中生和中学生。这一推广方案将有助于提高学龄儿童的科学素养,并为更多的受众提供机会,特别是那些在科学和工程领域少数民族代表性不足的学区的受众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Hamelberg其他文献

Automatic Partition of Protein Molecular Dynamics using Coupled Hidden Markov-Ising Models
  • DOI:
    10.1016/j.bpj.2019.11.904
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Ka Chun Ho;Donald Hamelberg
  • 通讯作者:
    Donald Hamelberg
Disease Related Mutations Adjacent to Predicted Multiple Ca<sup>2+</sup> Binding Sites of Ca<sup>2+</sup>-Sensing Receptor Altering Intracellular Ca<sup>2+</sup> Oscillations via Extracellular Calcium and Amino Acid Signaling
  • DOI:
    10.1016/j.bpj.2011.11.2779
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Chen Zhang;Fadil Hannan;Yun Huang;Yusheng Jiang;Mulpuri Nagaraju;Rajesh Thakker;Donald Hamelberg;Edward Brown;Jenny Yang
  • 通讯作者:
    Jenny Yang
Evolutionarily Conserved and Divergent Residue-Residue Contact Dynamics Provide Insights into the Allosteric Regulation of Cyclophilins
  • DOI:
    10.1016/j.bpj.2017.11.1885
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Phuoc J. Vu;Xin-Qiu Yao;Mohamed Momin;Donald Hamelberg
  • 通讯作者:
    Donald Hamelberg
Dynamic Combinatorial Analysis of Local Configurations in Molecular Dynamics Simulation: Frequent Itemset Mining and Hierarchical Hidden Markov Model
  • DOI:
    10.1016/j.bpj.2018.11.923
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ka Chun Ho;Donald Hamelberg
  • 通讯作者:
    Donald Hamelberg

Donald Hamelberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Hamelberg', 18)}}的其他基金

Fine tuning of protein functional atomistic dynamics in molecular evolution and cellular processes
分子进化和细胞过程中蛋白质功能原子动力学的微调
  • 批准号:
    2018144
  • 财政年份:
    2020
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Standard Grant
Establishing the link between biomolecular dynamics and function from an atomistic perspective
从原子论的角度建立生物分子动力学和功能之间的联系
  • 批准号:
    1517617
  • 财政年份:
    2015
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Continuing Grant

相似海外基金

(Inter)facing the Bitter Truth: How to Design Better Interfaces in Next-Gen Batteries using Atomistic Simulations Assisted by Machine-Learning
(交互)面对痛苦的真相:如何使用机器学习辅助的原子模拟设计下一代电池中更好的界面
  • 批准号:
    2886070
  • 财政年份:
    2023
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Studentship
ERI: Learning the Constitutive Equations of Chemo-Mechanics from Atomistic Simulations
ERI:从原子模拟中学习化学力学本构方程
  • 批准号:
    2138431
  • 财政年份:
    2022
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Standard Grant
Atomistic and multiscale simulations of next generation energy storage systems
下一代储能系统的原子和多尺度模拟
  • 批准号:
    2890209
  • 财政年份:
    2022
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Studentship
Amorphous Materials by Design through Atomistic Simulations
通过原子模拟设计非晶材料
  • 批准号:
    EP/X016188/1
  • 财政年份:
    2022
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Research Grant
Atomistic Simulations of Novel Materials for the Next-gen All-Solid-State Battery Technology
下一代全固态电池技术新型材料的原子模拟
  • 批准号:
    2594260
  • 财政年份:
    2021
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Studentship
Calculation of the free energy of interaction between clay particles by atomistic simulations
通过原子模拟计算粘土颗粒之间相互作用的自由能
  • 批准号:
    563531-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 87.73万
  • 项目类别:
    University Undergraduate Student Research Awards
Atomistic Macroscopic Simulations of Collisional Plasmas
碰撞等离子体的原子宏观模拟
  • 批准号:
    2108505
  • 财政年份:
    2021
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Standard Grant
Applying deep learning to large-scale quantum mechanical atomistic simulations and electronic structure theory
将深度学习应用于大规模量子力学原子模拟和电子结构理论
  • 批准号:
    518314-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Frontera Travel Grant: Enhanced Atomistic Simulations for Predictive Multi-Scale Modeling Safety Pharmacology Pipeline
Frontera 旅行补助金:用于预测多尺度建模安全药理学管道的增强原子模拟
  • 批准号:
    2032486
  • 财政年份:
    2020
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Standard Grant
Elements: DeepPDB: An open-source automated framework to enable high-fidelity atomistic simulations in unexplored material space
元素:DeepPDB:一个开源自动化框架,可在未探索的材料空间中实现高保真原子模拟
  • 批准号:
    2003808
  • 财政年份:
    2020
  • 资助金额:
    $ 87.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了