Establishing the link between biomolecular dynamics and function from an atomistic perspective
从原子论的角度建立生物分子动力学和功能之间的联系
基本信息
- 批准号:1517617
- 负责人:
- 金额:$ 84.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regulation of biological processes in the cell relies on physical interactions between biomolecules and on the resulting changes in the dynamics and conformations (shape) of the biomolecules. These processes in turn regulate relocation of biomolecules within different regions of the cell, speed up biochemical reactions, turn on and off gene expression, and aid the correct folding of other proteins. The relationship between three-dimensional structures and function of biomolecules alone is insufficient to fully explain the molecular basis of these processes. Biomolecules are not static but inherently flexible, and the role of biomolecular motions in the regulation of biological functions has remained unclear, despite an increasing number of experimental and theoretical studies. The inability to separate out the contributions of different factors to overall function is at the heart of the problem. The goal of this research project is to establish the molecular basis of the motions of biomolecules involved in biological processes. Computational tools that are developed will be publicly available and implemented into widely used open computational software for anyone to use and improve upon. The research will provide an excellent opportunity to attract and train the next generation of scientists. An advantage of the research is that it cuts across many disciplines, including chemistry, biology, physics, mathematics, and computer science, and, therefore, provides an excellent opportunity to attract students into the sciences and scientific research. The relationship between structure and function in biomolecules is well established, however, this information is not always adequate to provide a complete understanding of the mechanism of biomolecular processes. The relationship between structure, dynamics and function in allostery and enzyme mechanisms is therefore far from being fully understood. Critical barriers to progress are the lack of fundamental understanding of the role of dynamical motions in biomolecular function and the inability to experimentally describe temporal behaviors of biomolecules at atomic resolution. The goal of this project is to establish the molecular basis of dynamical and allosteric regulation in biological systems involving cooperative substrate binding and transient protein-protein interactions in complex biomolecular assemblies. Specifically, the research uses theory and computer simulations as complementary tools to a variety of experiments, including NMR, X-ray crystallography and Surface Plasmon Resonance, to understand allosteric regulation in a multi-domain enzyme, Pin1, and a transcription factor co-regulator Pirin. The main objectives are to identify dynamical networks of residue-residue interactions that regulate function, to describe their characteristics on a quantitative level, and to explore computational approaches to access long time scale dynamics, overcoming limitations of traditional direct simulation methods. Computational investigation of the above systems in atomic detail will allow understanding of how modulation in dynamics in one region is communicated via a dynamical network of amino acid residues to a spatially distal region. The research will enhance the incorporation of biomolecular dynamics in interpreting experimental results. The research will provide the fundamental knowledge needed to establish the relationship between dynamics, structure, and function in sub-cellular processes. This project is jointly funded by the Molecular Biophysics Cluster in the Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences and the Chemical Theory, Models, and Computational Methods Program in the Division of Chemistry in the Directorate of Mathematical and Physical Sciences.
细胞中生物过程的调节依赖于生物分子之间的物理相互作用以及生物分子的动力学和构象(形状)的变化。这些过程反过来调节细胞不同区域内生物分子的重新定位,加速生化反应,打开和关闭基因表达,并帮助其他蛋白质的正确折叠。单靠生物分子的三维结构和功能之间的关系不足以完全解释这些过程的分子基础。生物分子不是静态的,而是固有的柔性,尽管越来越多的实验和理论研究,生物分子运动在生物功能调节中的作用仍然不清楚。无法区分不同因素对整体功能的贡献是问题的核心。该研究项目的目标是建立参与生物过程的生物分子运动的分子基础。开发的计算工具将公开提供,并实现为广泛使用的开放计算软件,供任何人使用和改进。这项研究将为吸引和培养下一代科学家提供一个极好的机会。这项研究的一个优点是它跨越了许多学科,包括化学,生物学,物理学,数学和计算机科学,因此,提供了一个很好的机会,吸引学生进入科学和科学研究。生物分子的结构和功能之间的关系已经很好地建立起来,然而,这些信息并不总是足以提供对生物分子过程机制的完整理解。因此,变构和酶机制中的结构、动力学和功能之间的关系远未被完全理解。进展的关键障碍是缺乏对生物分子功能中动力学运动的作用的基本理解,以及无法以原子分辨率实验描述生物分子的时间行为。该项目的目标是建立生物系统中的动力学和变构调节的分子基础,包括复杂生物分子组装中的合作底物结合和瞬时蛋白质-蛋白质相互作用。具体而言,该研究使用理论和计算机模拟作为各种实验的补充工具,包括NMR,X射线晶体学和表面等离子体共振,以了解多结构域酶Pin 1和转录因子共调节因子Pirin的变构调节。其主要目标是识别调节功能的残基-残基相互作用的动态网络,在定量水平上描述其特征,并探索访问长时间尺度动态的计算方法,克服传统直接模拟方法的局限性。上述系统的原子细节的计算调查将允许了解如何在一个区域中的动态调制是通过氨基酸残基的动态网络的空间远端区域通信。这项研究将加强生物分子动力学在解释实验结果中的结合。该研究将提供建立亚细胞过程中动力学,结构和功能之间关系所需的基础知识。 该项目由生物科学理事会分子和细胞生物科学部的分子生物物理学集群和数学和物理科学理事会化学部的化学理论,模型和计算方法计划共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Hamelberg其他文献
Automatic Partition of Protein Molecular Dynamics using Coupled Hidden Markov-Ising Models
- DOI:
10.1016/j.bpj.2019.11.904 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Ka Chun Ho;Donald Hamelberg - 通讯作者:
Donald Hamelberg
Disease Related Mutations Adjacent to Predicted Multiple Ca<sup>2+</sup> Binding Sites of Ca<sup>2+</sup>-Sensing Receptor Altering Intracellular Ca<sup>2+</sup> Oscillations via Extracellular Calcium and Amino Acid Signaling
- DOI:
10.1016/j.bpj.2011.11.2779 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Chen Zhang;Fadil Hannan;Yun Huang;Yusheng Jiang;Mulpuri Nagaraju;Rajesh Thakker;Donald Hamelberg;Edward Brown;Jenny Yang - 通讯作者:
Jenny Yang
Evolutionarily Conserved and Divergent Residue-Residue Contact Dynamics Provide Insights into the Allosteric Regulation of Cyclophilins
- DOI:
10.1016/j.bpj.2017.11.1885 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Phuoc J. Vu;Xin-Qiu Yao;Mohamed Momin;Donald Hamelberg - 通讯作者:
Donald Hamelberg
Dynamic Combinatorial Analysis of Local Configurations in Molecular Dynamics Simulation: Frequent Itemset Mining and Hierarchical Hidden Markov Model
- DOI:
10.1016/j.bpj.2018.11.923 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Ka Chun Ho;Donald Hamelberg - 通讯作者:
Donald Hamelberg
Donald Hamelberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Hamelberg', 18)}}的其他基金
Fine tuning of protein functional atomistic dynamics in molecular evolution and cellular processes
分子进化和细胞过程中蛋白质功能原子动力学的微调
- 批准号:
2018144 - 财政年份:2020
- 资助金额:
$ 84.19万 - 项目类别:
Standard Grant
CAREER: Atomistic Simulations of Enzymatic Modulation of Long-Timescale Biomolecular Switches
职业:长时标生物分子开关酶促调节的原子模拟
- 批准号:
0953061 - 财政年份:2010
- 资助金额:
$ 84.19万 - 项目类别:
Continuing Grant
相似国自然基金
LINK-A/miR-155-5p/PKM2轴促进有氧糖酵解介导套细胞淋巴瘤伊布替尼耐药的作用机制研究
- 批准号:LQ21H160036
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
高性能功率变换器DC-Link电容模组关键技术研究
- 批准号:51777146
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
载CCL5和Link N的HAP水凝胶招募干细胞修复压力诱导的椎间盘退变
- 批准号:81572204
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Corey-Link反应的不对称催化研究及其在天然产物合成中的应用
- 批准号:21272221
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Link N/P1543活性多肽自组装纳米纤维髓核组织工程研究
- 批准号:30872610
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
多基因系谱学(Multi-Gene Genealogy)对曲霉、青霉和拟青霉分类形态特征的研究
- 批准号:30660002
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
LINK SPAM技术的研究及相关算法在海量真实WEB数据上的有效性验证
- 批准号:60603042
- 批准年份:2006
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
我国各经济区域间动态投入产出连接(LINK)模型的研究
- 批准号:78870042
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Establishing Mechanisms Between Traumatic Brain Injury and Dementia Using Epidemiology, Clinical Studies, Blood-Based Biomarkers, and Neuroimaging Biomarkers
利用流行病学、临床研究、血液生物标志物和神经影像生物标志物建立创伤性脑损伤和痴呆之间的机制
- 批准号:
10449172 - 财政年份:2022
- 资助金额:
$ 84.19万 - 项目类别:
Establishing Mechanisms Between Traumatic Brain Injury and Dementia Using Epidemiology, Clinical Studies, Blood-Based Biomarkers, and Neuroimaging Biomarkers
利用流行病学、临床研究、血液生物标志物和神经影像生物标志物建立创伤性脑损伤和痴呆之间的机制
- 批准号:
10610962 - 财政年份:2022
- 资助金额:
$ 84.19万 - 项目类别:
Establishing Genotype-to-Phenotype Relationships Between Alzheimer’s Related BIN1 Variants
建立阿尔茨海默病相关 BIN1 变异之间的基因型与表型关系
- 批准号:
10525652 - 财政年份:2022
- 资助金额:
$ 84.19万 - 项目类别:
Establishing mechanistic links between the gut microbiome and atherosclerosis
建立肠道微生物组和动脉粥样硬化之间的机制联系
- 批准号:
10392355 - 财政年份:2020
- 资助金额:
$ 84.19万 - 项目类别:
Establishing the Pathways Between Diabetes and Cardiac Dysfunction: Epidemiology, Biomarkers, and Imaging
建立糖尿病和心脏功能障碍之间的途径:流行病学、生物标志物和影像学
- 批准号:
10039436 - 财政年份:2020
- 资助金额:
$ 84.19万 - 项目类别:
Establishing mechanistic links between the gut microbiome and atherosclerosis
建立肠道微生物组和动脉粥样硬化之间的机制联系
- 批准号:
10600832 - 财政年份:2020
- 资助金额:
$ 84.19万 - 项目类别:
Establishing the Pathways Between Diabetes and Cardiac Dysfunction: Epidemiology, Biomarkers, and Imaging
建立糖尿病和心脏功能障碍之间的途径:流行病学、生物标志物和影像学
- 批准号:
10223929 - 财政年份:2020
- 资助金额:
$ 84.19万 - 项目类别:
Establishing the Pathways Between Diabetes and Cardiac Dysfunction: Epidemiology, Biomarkers, and Imaging
建立糖尿病和心脏功能障碍之间的途径:流行病学、生物标志物和影像学
- 批准号:
10457933 - 财政年份:2020
- 资助金额:
$ 84.19万 - 项目类别:
Establishing the Pathways Between Diabetes and Cardiac Dysfunction: Epidemiology, Biomarkers, and Imaging
建立糖尿病和心脏功能障碍之间的途径:流行病学、生物标志物和影像学
- 批准号:
10640881 - 财政年份:2020
- 资助金额:
$ 84.19万 - 项目类别:
Establishing mechanistic links between the gut microbiome and atherosclerosis
建立肠道微生物组和动脉粥样硬化之间的机制联系
- 批准号:
9981230 - 财政年份:2020
- 资助金额:
$ 84.19万 - 项目类别: