CAREER: Frequency Domain Plasmon Fluctuation Spectroscopy For Single Biopolymer Mechanical Sensing
职业:用于单一生物聚合物机械传感的频域等离子体激元波动光谱
基本信息
- 批准号:0953121
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0953121ReinhardThis CAREER proposal describes a research plan for the development of a novel plasmon fluctuation spectroscopy and for the application of this sensor to characterize the mechanical properties of individual biopolymers without limitation in observation time. Plasmon coupling spectroscopy utilizes the distance-dependent near-field coupling between individual noble metal nanoparticles to quantify structural fluctuations in individual biopolymers in the frequency domain. The proposal also contains a strong educational component describing plans for training graduate and undergraduate students, as well as attracting high-school students to the natural sciences.Intellectual Merit. To date, plasmon coupling between individual pairs of noble metal nanoparticles, so called plasmon rulers, has been exclusively used for distance measurements in the time domain. In this application the method is further enhanced to exploit the distance dependence near-field interactions between individual noble metal nanoparticles to characterize structural fluctuations in the biopolymer tether in the frequency domain. To achieve the transition from a time to a frequency domain analysis, the proposed project will develop a new generation of plasmon rulers, detection approaches, and analysis schemes. The distance dependent plasmon coupling in this new generation of plasmon rulers will be systematically mapped, providing new insights into the underlying electromagnetic interactions between noble metal nanoparticles on length scales between 0.5 - 30 nm. The resulting technology will be able to analyze structural fluctuations in short (0.5 nm - 30 nm) DNAs and RNAs without the need to apply an external force. The targeted dynamic distance range is difficult to address with other sensors but is biologically highly relevant. Plasmon fluctuation spectroscopy's ability to monitor structural fluctuations in this range with high temporal resolution without limitation in total observation time will enable improved insights into the mechanical properties of DNAs and RNAs on the single molecule level and how these properties change as consequence of nucleoprotein complex formation.Broader Impact. Plasmon fluctuation spectroscopy enables the analysis of structural dynamics in individual biopolymers with higher temporal resolution and longer observation time than with fluorescence-based approaches. The technique will be applied to probe the mechanical properties of the nucleoprotein complex of the respiratory syncytial virus (RSV) to reveal the virus' fundamental regulation transcription and replication principles. RSV is the most common cause of bronchiolitis among infants and molecular understanding of its transcription and translation can pave the way to improved therapeutics and diagnostics. In addition to scientific impact, this CAREER plan will also have clear educational and outreach benefits. The project will offer high-school, undergraduate and graduate students the opportunity to participate in a collaborative research and education program. The interdisciplinary subject area of the proposed effort is of great interest to the general public. Synergistically with the laboratory research, the plan will enable a substantial outreach through the Principal Investigator's annual "NanoCamp" for students from local inner city high schools (whose students come primarily from underrepresented groups). The aim of the hands-on, week-long "camp" is to enable students to experience the excitement of nanotechnology in particular and of science in general. The Principal Investigator will sponsor undergraduate students and interested high school students who have completed NanoCamp to obtain hands-on research experience in the proposed interdisciplinary research effort.
0953121 Reinhard这份职业建议书描述了一项研究计划,用于开发一种新型等离子体波动光谱学,并将该传感器应用于表征单个生物聚合物的机械性能,而不受观察时间的限制。等离子体激元耦合光谱利用单个贵金属纳米颗粒之间的距离依赖性近场耦合来量化频域中单个生物聚合物的结构波动。该提案还包含一个强有力的教育部分,描述了培养研究生和本科生以及吸引高中生学习自然科学的计划。迄今为止,贵金属纳米颗粒的单独对之间的等离子体激元耦合(所谓的等离子体激元标尺)已经专门用于时域中的距离测量。在该应用中,该方法被进一步增强以利用单个贵金属纳米颗粒之间的距离依赖性近场相互作用来表征频域中生物聚合物系链中的结构波动。为了实现从时域分析到频域分析的过渡,该项目将开发新一代等离子体规则,检测方法和分析方案。在这个新一代的等离子体统治者的距离相关的等离子体耦合将被系统地映射,提供了新的见解,在0.5 - 30纳米之间的长度尺度的贵金属纳米粒子之间的潜在的电磁相互作用。由此产生的技术将能够分析短(0.5 nm - 30 nm)DNA和RNA的结构波动,而无需施加外力。目标动态距离范围很难用其他传感器解决,但与生物学高度相关。等离子体波动光谱技术能够以高时间分辨率监测该范围内的结构波动,而不受总观察时间的限制,这将有助于更好地了解DNA和RNA在单分子水平上的机械性质,以及这些性质如何随着核蛋白复合物的形成而变化。等离子体激元波动光谱能够以比基于荧光的方法更高的时间分辨率和更长的观察时间分析单个生物聚合物中的结构动力学。该技术将用于研究呼吸道合胞病毒(RSV)核蛋白复合物的力学性质,以揭示病毒转录和复制的基本调控机制。RSV是婴儿细支气管炎的最常见原因,对其转录和翻译的分子理解可以为改进治疗和诊断铺平道路。除了科学影响外,该职业计划还将具有明确的教育和推广效益。该项目将为高中,本科和研究生提供参与合作研究和教育计划的机会。拟议努力的跨学科主题领域是广大公众的极大兴趣。与实验室研究协同,该计划将通过主要研究者的年度“纳米营”为当地内城高中的学生(其学生主要来自代表性不足的群体)提供大量的外展服务。为期一周的“夏令营”的目的是让学生体验纳米技术的兴奋,特别是科学的兴奋。主要研究者将赞助本科生和感兴趣的高中生谁已经完成了NanoCamp获得动手研究经验,在拟议的跨学科研究工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bjoern Reinhard其他文献
Bjoern Reinhard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bjoern Reinhard', 18)}}的其他基金
Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
- 批准号:
2344525 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAS-MNP: Elucidating Nanoplastics - Cell Interactions that Enhance Polycyclic Aromatic Hydrocarbon Uptake in an Intestinal Membrane Model
CAS-MNP:阐明纳米塑料 - 增强肠膜模型中多环芳烃吸收的细胞相互作用
- 批准号:
2032376 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Plasmon Coupling Correlation Spectroscopy
等离子耦合相关光谱
- 批准号:
1808241 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Elucidating Multiparametric Nanoparticle - Intestinal Membrane Interactions in an In Vitro Model System
阐明体外模型系统中的多参数纳米颗粒-肠膜相互作用
- 批准号:
1822246 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
OP: Plasmonic Enhancement of Chiral Forces for Enantiomer Separation
OP:用于对映体分离的手性力的等离子体增强
- 批准号:
1609778 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Multiparametric Optical Microbe Sensing with Engineered Photonic-Plasmonic Nanostructures
利用工程光子等离子体纳米结构进行多参数光学微生物传感
- 批准号:
1159552 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Rationally Designed Plasmonic Nanostructures for Rapid Bacteria Detection and Identification
合理设计的等离子体纳米结构用于快速细菌检测和识别
- 批准号:
0853798 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307979 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
- 批准号:
2345225 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307978 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Energy-Efficient Broadband Spectrum Sensing in Real Time Based on a Frequency-Domain Analog Signal Processor
基于频域模拟信号处理器的实时节能宽带频谱感测
- 批准号:
2318759 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ERI: Hydraulic Cylinder Diagnostics Using Nonlinear Inverse Model Estimation and Frequency Domain Analysis
ERI:使用非线性逆模型估计和频域分析进行液压缸诊断
- 批准号:
2301535 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Frequency-Domain Model Updating through Branch and Bound with Convex Relaxation
通过凸松弛的分支定界更新频域模型
- 批准号:
2211343 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Frequency domain shortwave infrared spectroscopy (FD-SWIRS) for volume status monitoring during hemodialysis in end stage kidney disease
频域短波红外光谱 (FD-SWIRS) 用于终末期肾病血液透析期间容量状态监测
- 批准号:
10432546 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Frequency domain shortwave infrared spectroscopy (FD-SWIRS) for volume status monitoring during hemodialysis in end stage kidney disease
频域短波红外光谱 (FD-SWIRS) 用于终末期肾病血液透析期间容量状态监测
- 批准号:
10580084 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
- 批准号:
2208164 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Non-linear aeroelastic modelling by UVLM frequency domain formulation
通过 UVLM 频域公式进行非线性气动弹性建模
- 批准号:
572412-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards