Energy-Efficient Broadband Spectrum Sensing in Real Time Based on a Frequency-Domain Analog Signal Processor

基于频域模拟信号处理器的实时节能宽带频谱感测

基本信息

  • 批准号:
    2318759
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

RF spectrum is a scarce resource as the number of wireless electronic devices continues to explode. To maximize the utilization of the limited spectrum resource, temporal and spatial spectrum sharing is essential in next-generation wireless networks. Real-time spectrum sensing is a crucial technology to enable dynamic spectrum sharing. It identifies available spectrum instantaneously in the crowded frequency spectrum and helps the networks to dynamically adapt operating parameters such as transmit power, carrier frequency, and modulation format. As more applications continue to occupy millimeter-wave (mm-wave) spectrum, broadband spectrum sensing which covers both traditionally spectrum-congested frequency bands and new mm-wave bands will be needed. However, scanning a very broad spectrum bandwidth of more than 10 GHz is challenging due to the power-hungry high-speed analog-to-digital converter (ADC) and digital signal processing (DSP) circuitry. To address these challenges, this project will explore a novel silicon-based frequency domain analog signal processor co-designed with advanced signal processing algorithms. The research will be the first theoretical and experimental study of applying frequency-dependent constructive and destructive interference in an array of digitally programmable on-chip elements to frequency-domain analog signal processing. The research outcomes from this project can be adopted by industry to benefit a wide range of semiconductor and wireless network companies. The success of the project will also help maintain the continuous leadership of the United States in wireless technologies and semiconductors by training students to be innovative engineers in wireless industry.The goal of this project is to develop a silicon-based frequency domain analog signal processor co-designed with advanced signal processing algorithms to realize an energy-efficient ( 100 mW power consumption), broadband (25 GHz bandwidth), and low-latency (100 ns scan time) spectrum sensor. The design is based on frequency-dependent constructive and destructive interference in an array of on-chip programmable dispersion-engineered elements to create the frequency response of a digitally tunable narrow-bandpass filter. The proposed analog processor can sweep the center frequency of a "pencil-like" narrow passband linearly over a wide frequency range for spectrum scanning while maintaining a constant bandwidth. For the silicon implementation of the proposed analog processor, several fundamental IC and architecture-level innovations will be explored for the design of 1) a dispersion-engineered element that consists of a multi-functional phase shifter and cascaded delay cells, 2) a scalable path-sharing delayed signal combiner for chip area reduction, and 3) a digital control circuitry co-designed with advanced signal processing algorithms to orchestrate the dispersion-engineered elements for the optimal trade-off among resolution bandwidth, scan range, latency, and energy efficiency. The proposed signal processing algorithms leverage the recent advances in compressive sensing and hierarchical group testing and utilize the programmability of the proposed architecture to improve the sensing performance further. The successful development of the proposed broadband, energy-efficient, low-latency spectrum sensing will enable dynamic spectrum sharing to revolutionize the operation and management of modern and future wireless networks by dramatically alleviating the constantly increasing demands of the limited radio spectrum and maximizing utilization of the spectrum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着无线电子设备的数量持续爆炸式增长,RF频谱是一种稀缺资源。为了最大限度地利用有限的频谱资源,时间和空间频谱共享是下一代无线网络中必不可少的。实时频谱感知是实现动态频谱共享的关键技术。它在拥挤的频谱中即时识别可用频谱,并帮助网络动态调整发射功率、载波频率和调制格式等操作参数。随着越来越多的应用继续占用毫米波(mm波)频谱,将需要覆盖传统频谱拥塞频带和新的mm波段的宽带频谱感测。然而,由于高速模数转换器(ADC)和数字信号处理(DSP)电路功耗巨大,扫描超过10 GHz的极宽频谱带宽具有挑战性。为了应对这些挑战,本项目将探索一种新型硅基频域模拟信号处理器,与先进的信号处理算法共同设计。这项研究将是第一个理论和实验研究应用频率相关的建设性和破坏性的干涉在一个数字可编程的片上元件阵列的频域模拟信号处理。该项目的研究成果可以被工业界采用,使广泛的半导体和无线网络公司受益。该项目的成功也将有助于通过培养学生成为无线行业的创新工程师来保持美国在无线技术和半导体方面的持续领导地位。该项目的目标是开发一种与先进信号处理算法共同设计的硅基频域模拟信号处理器,以实现节能(100 mW功耗)、宽带(25 GHz带宽)和低延迟(100 ns扫描时间)频谱传感器。该设计基于片上可编程色散工程元件阵列中的频率相关建设性和破坏性干涉,以创建数字可调谐窄带通滤波器的频率响应。所提出的模拟处理器可以在一个较宽的频率范围内线性地扫描一个“类陀螺”窄通带的中心频率,以进行频谱扫描,同时保持恒定的带宽。对于所提出的模拟处理器的硅实现,将探索几个基本IC和架构级创新,用于1)由多功能移相器和级联延迟单元组成的色散工程元件,2)用于减小芯片面积的可扩展路径共享延迟信号组合器,以及3)与高级信号处理算法共同设计的数字控制电路,以协调色散工程元件,从而在分辨率带宽、扫描范围、等待时间和能量效率之间进行最佳权衡。所提出的信号处理算法利用压缩感知和分层组测试的最新进展,并利用所提出的架构的可编程性,以进一步提高感测性能。成功开发的建议宽带,节能,表示“低”的意思延迟频谱感知将使动态频谱共享成为可能,通过极大地缓解对有限无线电频谱不断增长的需求并最大限度地利用频谱,彻底改变现代和未来无线网络的运营和管理。该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wooram Lee其他文献

A fully-integrated 94-GHz 16-element dual-output phased-array transmitter in SiGe BiCMOS with PSAT>6.5 dBm up to 105 °C
采用 SiGe BiCMOS 封装的完全集成 94 GHz 16 元件双输出相控阵发射器,在最高 105 °C 时 PSAT>6.5 dBm
A Low-Loss Passive D-Band Phase Shifter for Calibration-Free, Precise Phase Control
用于免校准、精确相位控制的低损耗无源 D 波段移相器
Enkratic Rationality Is Instrumental Rationality *
恩克拉克理性是工具理性*
  • DOI:
    10.1111/phpe.12136
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wooram Lee
  • 通讯作者:
    Wooram Lee
Belief and settledness
信念与安定
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Wooram Lee
  • 通讯作者:
    Wooram Lee
A COMPARISON STUDY ON DENTAL TREATMENT TIME OF PATIENTS WITH DIFFERENT TYPES OF DISABILITIES
不同类型残疾患者牙科治疗时间的比较研究

Wooram Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wooram Lee', 18)}}的其他基金

FuSe-TG: Heterogeneous module, array antenna, and IC co-design for energy-efficient D-band wireless communications and radar
FuSe-TG:异构模块、阵列天线和 IC 协同设计,用于节能 D 频段无线通信和雷达
  • 批准号:
    2235336
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant

相似海外基金

Highly Efficient CMOS Transmitter for Emerging Broadband Wireless Communication Systems
适用于新兴宽带无线通信系统的高效 CMOS 发射器
  • 批准号:
    2123625
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
  • 批准号:
    RGPIN-2016-05108
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Grants Program - Individual
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
  • 批准号:
    RGPIN-2016-05108
  • 财政年份:
    2020
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Grants Program - Individual
Radio frequency multilevel switching mode power amplifiers with pulse-position and pulse-width modulation for efficient power amplification of broadband mobile communication signals
具有脉冲位置和脉宽调制功能的射频多级开关模式功率放大器,用于宽带移动通信信号的高效功率放大
  • 批准号:
    420690209
  • 财政年份:
    2019
  • 资助金额:
    $ 46万
  • 项目类别:
    Research Grants
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
  • 批准号:
    RGPIN-2016-05108
  • 财政年份:
    2019
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Grants Program - Individual
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
  • 批准号:
    RGPIN-2016-05108
  • 财政年份:
    2018
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Grants Program - Individual
Data converters for spectrally-efficient broadband communication
用于频谱效率宽带通信的数据转换器
  • 批准号:
    488910-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 46万
  • 项目类别:
    Collaborative Research and Development Grants
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
  • 批准号:
    RGPIN-2016-05108
  • 财政年份:
    2017
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Grants Program - Individual
Data converters for spectrally-efficient broadband communication
用于频谱效率宽带通信的数据转换器
  • 批准号:
    488910-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 46万
  • 项目类别:
    Collaborative Research and Development Grants
Data converters for spectrally-efficient broadband communication
用于频谱效率宽带通信的数据转换器
  • 批准号:
    488910-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 46万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了