Energy-Efficient Broadband Spectrum Sensing in Real Time Based on a Frequency-Domain Analog Signal Processor
基于频域模拟信号处理器的实时节能宽带频谱感测
基本信息
- 批准号:2318759
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
RF spectrum is a scarce resource as the number of wireless electronic devices continues to explode. To maximize the utilization of the limited spectrum resource, temporal and spatial spectrum sharing is essential in next-generation wireless networks. Real-time spectrum sensing is a crucial technology to enable dynamic spectrum sharing. It identifies available spectrum instantaneously in the crowded frequency spectrum and helps the networks to dynamically adapt operating parameters such as transmit power, carrier frequency, and modulation format. As more applications continue to occupy millimeter-wave (mm-wave) spectrum, broadband spectrum sensing which covers both traditionally spectrum-congested frequency bands and new mm-wave bands will be needed. However, scanning a very broad spectrum bandwidth of more than 10 GHz is challenging due to the power-hungry high-speed analog-to-digital converter (ADC) and digital signal processing (DSP) circuitry. To address these challenges, this project will explore a novel silicon-based frequency domain analog signal processor co-designed with advanced signal processing algorithms. The research will be the first theoretical and experimental study of applying frequency-dependent constructive and destructive interference in an array of digitally programmable on-chip elements to frequency-domain analog signal processing. The research outcomes from this project can be adopted by industry to benefit a wide range of semiconductor and wireless network companies. The success of the project will also help maintain the continuous leadership of the United States in wireless technologies and semiconductors by training students to be innovative engineers in wireless industry.The goal of this project is to develop a silicon-based frequency domain analog signal processor co-designed with advanced signal processing algorithms to realize an energy-efficient ( 100 mW power consumption), broadband (25 GHz bandwidth), and low-latency (100 ns scan time) spectrum sensor. The design is based on frequency-dependent constructive and destructive interference in an array of on-chip programmable dispersion-engineered elements to create the frequency response of a digitally tunable narrow-bandpass filter. The proposed analog processor can sweep the center frequency of a "pencil-like" narrow passband linearly over a wide frequency range for spectrum scanning while maintaining a constant bandwidth. For the silicon implementation of the proposed analog processor, several fundamental IC and architecture-level innovations will be explored for the design of 1) a dispersion-engineered element that consists of a multi-functional phase shifter and cascaded delay cells, 2) a scalable path-sharing delayed signal combiner for chip area reduction, and 3) a digital control circuitry co-designed with advanced signal processing algorithms to orchestrate the dispersion-engineered elements for the optimal trade-off among resolution bandwidth, scan range, latency, and energy efficiency. The proposed signal processing algorithms leverage the recent advances in compressive sensing and hierarchical group testing and utilize the programmability of the proposed architecture to improve the sensing performance further. The successful development of the proposed broadband, energy-efficient, low-latency spectrum sensing will enable dynamic spectrum sharing to revolutionize the operation and management of modern and future wireless networks by dramatically alleviating the constantly increasing demands of the limited radio spectrum and maximizing utilization of the spectrum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着无线电子设备的数量继续爆炸,RF光谱是一种稀缺的资源。为了最大程度地利用有限的频谱资源,时间和空间频谱共享对于下一代无线网络至关重要。实时频谱传感是一种至关重要的技术,可以实现动态频谱共享。它在拥挤的频谱中立即识别可用的频谱,并帮助网络动态调整操作参数,例如传输功率,载波频率和调制格式。随着越来越多的应用继续占据毫米波(MM波)频谱,宽带频谱传感将需要涵盖传统上频谱的频带和新的MM波频段。但是,由于渴望渴望的高速类似物对数字转换器(ADC)和数字信号处理(DSP)电路,扫描超过10 GHz的非常广泛的频谱带宽具有挑战性。为了应对这些挑战,该项目将探索与高级信号处理算法共同设计的基于硅的新型频域模拟信号处理器。这项研究将是在一系列可编程的芯片上元素中应用频率依赖性的构建性和破坏性干扰的第一个理论和实验研究,以示为频率域模拟信号处理。该项目可以采用该项目的研究成果,以使广泛的半导体和无线网络公司受益。 The success of the project will also help maintain the continuous leadership of the United States in wireless technologies and semiconductors by training students to be innovative engineers in wireless industry.The goal of this project is to develop a silicon-based frequency domain analog signal processor co-designed with advanced signal processing algorithms to realize an energy-efficient ( 100 mW power consumption), broadband (25 GHz bandwidth), and low-latency (100 ns扫描时间)频谱传感器。该设计基于频率依赖性的建设性和破坏性干扰,在一系列片上可编程的分散工程元素中,创建了可调数字可调的窄带滤波器的频率响应。所提出的模拟处理器可以在频率范围内线性地扫描“类似铅笔”的狭窄通带的中心频率,以进行光谱扫描,同时保持恒定的带宽。为了实施拟议的模拟处理器,将探索几种基本的IC和架构级创新,以设计1)分散工程元素,该元素由分散工程元素组成,由多功能相位变速杆和级联延迟单元格组成,2)2)一个可扩展的路径延迟信号组合的延迟信号组合,以及芯片降低的延迟信号组合,以及3)chip coity coity coiders coiders coitity coiders coilter coilter coilter coiltry coid coiduction and 3))在分辨率带宽,扫描范围,延迟和能源效率之间进行分散工程元素,以实现分散工程的元素。提出的信号处理算法利用了压缩感测和分层组测试的最新进展,并利用了提出的体系结构的可编程性进一步提高感应性能。拟议的宽带,节能,低延迟频谱感应的成功发展将使动态频谱共享通过极大地减轻有限的无线电频谱的不断增长的需求,从而改变现代和未来的无线网络的运行和管理,并最大程度地利用了该奖项的启用。和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wooram Lee其他文献
A fully-integrated 94-GHz 16-element dual-output phased-array transmitter in SiGe BiCMOS with PSAT>6.5 dBm up to 105 °C
采用 SiGe BiCMOS 封装的完全集成 94 GHz 16 元件双输出相控阵发射器,在最高 105 °C 时 PSAT>6.5 dBm
- DOI:
10.1109/csics.2017.8240454 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Wooram Lee;Caglar Ozdag;Yigit Aydogan;J. Plouchart;M. Yeck;A. Cabuk;A. Kepkep;Emre Apaydin;A. Valdes - 通讯作者:
A. Valdes
A Low-Loss Passive D-Band Phase Shifter for Calibration-Free, Precise Phase Control
用于免校准、精确相位控制的低损耗无源 D 波段移相器
- DOI:
10.1109/jssc.2024.3357738 - 发表时间:
2024 - 期刊:
- 影响因子:5.4
- 作者:
M. Abbasi;Wooram Lee - 通讯作者:
Wooram Lee
A COMPARISON STUDY ON DENTAL TREATMENT TIME OF PATIENTS WITH DIFFERENT TYPES OF DISABILITIES
不同类型残疾患者牙科治疗时间的比较研究
- DOI:
10.12655/kadh.2014.10.2.78 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Wooram Lee;Young - 通讯作者:
Young
Fittingness first?: Reasons to withhold belief
适合第一?:不相信的理由
- DOI:
10.1007/s11098-022-01848-9 - 发表时间:
2022 - 期刊:
- 影响因子:1.3
- 作者:
Wooram Lee - 通讯作者:
Wooram Lee
Enkratic Rationality Is Instrumental Rationality
*
恩克拉克理性是工具理性*
- DOI:
10.1111/phpe.12136 - 发表时间:
2020 - 期刊:
- 影响因子:2
- 作者:
Wooram Lee - 通讯作者:
Wooram Lee
Wooram Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wooram Lee', 18)}}的其他基金
FuSe-TG: Heterogeneous module, array antenna, and IC co-design for energy-efficient D-band wireless communications and radar
FuSe-TG:异构模块、阵列天线和 IC 协同设计,用于节能 D 频段无线通信和雷达
- 批准号:
2235336 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
相似国自然基金
高效宽带铋激活红光材料的光动力学变价机理及发光性能研究
- 批准号:12374386
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于可重构孤子技术的宽带高效微光梳研究
- 批准号:62305018
- 批准年份:2023
- 资助金额:10.00 万元
- 项目类别:青年科学基金项目
稀土Eu2+激活高效宽带近红外发光材料的设计及其发光机理研究
- 批准号:52302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光伏窗应用的高效稳定半透明宽带隙钙钛矿太阳电池的研究
- 批准号:
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
- 批准号:
RGPIN-2016-05108 - 财政年份:2021
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
- 批准号:
RGPIN-2016-05108 - 财政年份:2020
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
- 批准号:
RGPIN-2016-05108 - 财政年份:2019
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
- 批准号:
RGPIN-2016-05108 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Cognitive energy-efficient transmission and resource allocation techniques for broadband access systems
宽带接入系统的认知节能传输和资源分配技术
- 批准号:
RGPIN-2016-05108 - 财政年份:2017
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual