Multiparametric Optical Microbe Sensing with Engineered Photonic-Plasmonic Nanostructures

利用工程光子等离子体纳米结构进行多参数光学微生物传感

基本信息

  • 批准号:
    1159552
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

ReinhardCBET-1159552Nanoparticle assemblies generate new properties that are different from those of the isolated particles and, therefore, offer tremendous opportunities for creating new capabilities on the nanoscale. This proposal seeks to take advantage of the fact that defined arrays of gold nanoparticles have engineerable plasmon resonances whose spatial and frequency distribution can be controlled through the morphology of the array. Since the exact plasmon resonance wavelength of a noble metal nanoparticles depend on the refractive index of the environment, nanostructured noble metal surfaces are colorimetric sensors. Aperiodic metal nanostructures sustain structural color patterns which enable entirely new sensing approaches based on spatial correlation imaging. In addition, nanostructured surfaces assembled from nanoparticle clusters as building blocks can efficiently localize incident electromagnetic fields and generate high E-field enhancements. Consequently, nanoparticle cluster arrays are also superb substrates for surface enhanced Raman spectroscopy. This proposal seeks to combine the advantageousphotonic and plasmonic properties of nanostructured surfaces to develop multiparametric responders that achieve enhanced optical microbe detection and identification performance through combined analysis of elastic and inelastic light scattering processes.Intellectual MeritsThe research in this project will develop a new class of multiparametric optical microbe sensors, that can identify and detect a broad range of microbes (viruses, bacteria, spores) with high fidelity due to two subsequent sensing stages in real time. A first stage of specificity will be achieved through antibody functionalization of the sensor surface. Binding of microbes to these antibodies will be detected through a colorimetric shift in the elastically scattered light. In the second analysis step in elastically scattered light is analyzed to obtain a vibrational SERS spectrum of the microbe surface. This spectrum serves as a fingerprint of the microbe and enables its identification when combined with multivariate data analysis and appropriate library spectra. We anticipate that the SERS based identification approach will enable microbe classifications on the strain level. The proposed approach of two subsequent identification stages achieves a significant improvement in the identification reliability over conventional optical biosensors. Because SERS allows an identification of organisms on the single cell level, the proposed multiparametric sensors could pave the way to an optical analysis of ?real world? samples that always contain a complex mixture of microbes. Besides these important sensing advances, the research in this proposal will also improve current capabilities to engineer photonic-plasmonic noble metal structures with defined optical responses.Broader ImpactReliable and rapid microbe detection is relevant in critical sensing areas such as environmental monitoring, food quality control, and homeland security. The proposed sensor could make optical microbe detection faster and more reliable and could thus impact all of the above sensing areas. In addition to the outlined scientific impacts, the research has clear educational and outreach components. The project will offer high school, undergraduate, and graduate students the opportunity to participate in a collaborative research and education program. It will form the basis for at least two PhD theses. In synergy with the laboratory research, this proposal will enable a substantial outreach program. The Principal Investigator (PI) organizes an annual NanoCamp for students from local inner city high schools, and both PI and Co-PI sponsor undergraduate students and interested high school students to obtain hands-on research experience in this interdisciplinary research effort. These outreach activities will help to enthuse junior researchers and high school students for the field of biosensing and science and technology in general.
ReinhardCBET-1159552纳米颗粒组装体产生了与孤立颗粒不同的新特性,因此为在纳米级上创造新功能提供了巨大的机会。该提议试图利用这样的事实,即限定的金纳米颗粒阵列具有可工程化的等离子体共振,其空间和频率分布可以通过阵列的形态来控制。由于贵金属纳米颗粒的确切等离子体共振波长取决于环境的折射率,因此纳米结构的贵金属表面是比色传感器。非周期性金属纳米结构维持结构颜色图案,这使得基于空间相关成像的全新传感方法成为可能。此外,由纳米颗粒簇组装的纳米结构表面作为构建块可以有效地定位入射电磁场并产生高电场增强。因此,纳米颗粒簇阵列也是表面增强拉曼光谱的极好基底。本项目旨在联合收割机结合纳米结构表面的光子和等离子体特性,开发多参数响应器,通过联合分析弹性和非弹性光散射过程,实现增强的光学微生物检测和识别性能。由于在真实的时间中的两个随后的感测阶段而具有高保真度地检测(病毒、细菌、孢子)。特异性的第一阶段将通过传感器表面的抗体功能化来实现。微生物与这些抗体的结合将通过弹性散射光中的比色位移来检测。在第二分析步骤中,分析弹性散射光以获得微生物表面的振动SERS光谱。该光谱用作微生物的指纹,并且当与多变量数据分析和适当的库光谱相结合时能够对其进行鉴定。我们预计,基于SERS的鉴定方法将使菌株水平上的微生物分类。所提出的方法的两个后续的识别阶段实现了显着的改进,在传统的光学生物传感器的识别可靠性。由于表面增强拉曼光谱允许单细胞水平上的生物体的识别,建议的多参数传感器可以铺平道路的光学分析?真实的世界?总是含有复杂的微生物混合物的样本。除了这些重要的传感技术进展外,该提案中的研究还将提高目前设计具有明确光学响应的光子等离子体贵金属结构的能力。更广泛的影响可靠和快速的微生物检测与环境监测,食品质量控制和国土安全等关键传感领域有关。所提出的传感器可以使光学微生物检测更快、更可靠,从而影响上述所有传感领域。除了概述的科学影响外,该研究还具有明确的教育和推广内容。该项目将为高中生、本科生和研究生提供参与合作研究和教育计划的机会。它将构成至少两个博士论文的基础。在与实验室研究的协同作用下,这一建议将使一个实质性的推广计划成为可能。主要研究者(PI)组织从当地内城高中的学生每年纳米营,PI和共同PI赞助本科生和感兴趣的高中学生获得动手研究经验,在这个跨学科的研究工作。这些推广活动将有助于激发初级研究人员和高中学生对生物传感和一般科学技术领域的热情。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bjoern Reinhard其他文献

Bjoern Reinhard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bjoern Reinhard', 18)}}的其他基金

Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
  • 批准号:
    2344525
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAS-MNP: Elucidating Nanoplastics - Cell Interactions that Enhance Polycyclic Aromatic Hydrocarbon Uptake in an Intestinal Membrane Model
CAS-MNP:阐明纳米塑料 - 增强肠膜模型中多环芳烃吸收的细胞相互作用
  • 批准号:
    2032376
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Plasmon Coupling Correlation Spectroscopy
等离子耦合相关光谱
  • 批准号:
    1808241
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Elucidating Multiparametric Nanoparticle - Intestinal Membrane Interactions in an In Vitro Model System
阐明体外模型系统中的多参数纳米颗粒-肠膜相互作用
  • 批准号:
    1822246
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
OP: Plasmonic Enhancement of Chiral Forces for Enantiomer Separation
OP:用于对映体分离的手性力的等离子体增强
  • 批准号:
    1609778
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Frequency Domain Plasmon Fluctuation Spectroscopy For Single Biopolymer Mechanical Sensing
职业:用于单一生物聚合物机械传感的频域等离子体激元波动光谱
  • 批准号:
    0953121
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Rationally Designed Plasmonic Nanostructures for Rapid Bacteria Detection and Identification
合理设计的等离子体纳米结构用于快速细菌检测和识别
  • 批准号:
    0853798
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

INTEPS - INtegrated optical ThErmal Phosphorescence System
INTEPS - 集成光学热磷光系统
  • 批准号:
    10089333
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
  • 批准号:
    EP/Y021789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Underwater Robot Navigation and Localization During Recovery by Optical Homing and Penning
水下机器人在回收过程中通过光学寻的和潘宁进行导航和定位
  • 批准号:
    2330416
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
  • 批准号:
    2340973
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
REU Site: Research Experience in Optical-Infrared Astronomy at NOIRLab in Chile
REU 站点:智利 NOIRLab 光学红外天文学研究经验
  • 批准号:
    2349023
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
  • 批准号:
    EP/X031918/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
  • 批准号:
    EP/X034542/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了