CAREER: Optimization Models and Approximation Algorithms for Network Vulnerability and Adaptability
职业:网络脆弱性和适应性的优化模型和近似算法
基本信息
- 批准号:0953284
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex network systems are extremely vulnerable. This vulnerability may be propagated, leading to a much more devastating consequence. Furthermore, several network algorithms must be adaptable to changes in order to maintain their functions. In the presence of uncertainty, network vulnerability and adaptability are the two major aspects that must be deeply investigated.This proposal is using optimization theory and approximation techniques to address the following fundamental questions: How do we quantitatively measure the vulnerability degree of the network? How is the vulnerability propagated? What are the quantitative benefits of using adaptive solutions vs. re-computing it from scratch? What techniques can we use for adaptive solutions in order to theoretically bound their performance? The proposal provides several new theoretical frameworks and approximation techniques to characterize the network vulnerability and adaptability, which brings the understanding of network vulnerability and adaptability to the next level.This research can potentially impact nearly all applications that benefit from networks such as the Internet, critical network infrastructures, and transportation networks where vulnerability and adaptability are important characteristics. In addition to its obvious impact on networks, the project crosses several research areas such as graph theory, approximation algorithms, combinatorial optimization, and computational complexity, thus it has a profound impact on the theory of optimization and approximation, especially the adaptive approximation techniques.
复杂的网络系统非常脆弱。这种脆弱性可能会传播,导致更具破坏性的后果。此外,一些网络算法必须适应变化,以保持其功能。在不确定性环境下,网络的脆弱性和适应性是必须深入研究的两个主要方面,本文利用最优化理论和近似技术来解决以下基本问题:如何定量地度量网络的脆弱程度?漏洞是如何传播的?使用自适应解决方案与从头开始重新计算相比,在量化方面有什么好处?我们可以使用哪些技术来实现自适应解决方案,以便在理论上限制其性能?该提案提供了几个新的理论框架和近似技术来表征网络的脆弱性和适应性,这使得网络的脆弱性和适应性的理解到一个新的水平,这项研究可能会影响几乎所有的应用程序,受益于网络,如互联网,关键网络基础设施,交通网络的脆弱性和适应性是重要的特征。该项目除了对网络产生明显的影响外,还跨越了图论、逼近算法、组合优化和计算复杂性等多个研究领域,对优化和逼近理论,特别是自适应逼近技术产生了深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
My Thai其他文献
An Approximation for Minimum Multicast Route in Optical Networks with Nonsplitting Nodes
- DOI:
10.1007/s10878-005-4925-3 - 发表时间:
2005-12-01 - 期刊:
- 影响因子:1.100
- 作者:
Longjiang Guo;Weili Wu;Feng Wang;My Thai - 通讯作者:
My Thai
My Thai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('My Thai', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Information Integrity: A User-centric Intervention
协作研究:SaTC:核心:媒介:信息完整性:以用户为中心的干预
- 批准号:
2323794 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: EAGER: Trustworthy and Privacy-preserving Federated Learning
协作研究:SaTC:EAGER:值得信赖且保护隐私的联邦学习
- 批准号:
2140477 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Trustworthy and Explainable AI for Neurodegenerative Diseases
合作研究:SCH:值得信赖且可解释的人工智能治疗神经退行性疾病
- 批准号:
2123809 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: When Adversarial Learning Meets Differential Privacy: Theoretical Foundation and Applications
SaTC:核心:小型:协作:当对抗性学习遇到差异性隐私时:理论基础和应用
- 批准号:
1935923 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Stream-Based Active Mining at Scale: Non-Linear Non-Submodular Maximization
III:小型:协作研究:基于流的大规模主动挖掘:非线性非子模最大化
- 批准号:
1908594 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Lightweight Adaptive Algorithms for Network Optimization at Scale towards Emerging Services
NetS:小型:协作研究:面向新兴服务的大规模网络优化的轻量级自适应算法
- 批准号:
1814614 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Laying the Foundations of Social Network-Aware Cellular Device-to-Device Communications
EARS:协作研究:为社交网络感知的蜂窝设备到设备通信奠定基础
- 批准号:
1443905 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: RIPS Type 2: Vulnerability Assessment and Resilient Design of Interdependent Infrastructures
合作研究:RIPS 类型 2:相互依赖基础设施的漏洞评估和弹性设计
- 批准号:
1441231 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CIF: Small: Modeling and Dynamic Analyzing for Multiplex Social Networks
CIF:小型:多重社交网络的建模和动态分析
- 批准号:
1422116 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SGER: A New Approach for Identifying DoS Attackers Based on Group Testing Techniques
SGER:基于组测试技术识别 DoS 攻击者的新方法
- 批准号:
0847869 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bilevel Optimization for Training Generalizable Language Models
用于训练可推广语言模型的双层优化
- 批准号:
23K16940 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing Machine Learning Models for Decision Support and Allocation Optimization in Heart Transplantation
开发用于心脏移植决策支持和分配优化的机器学习模型
- 批准号:
10735348 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
- 批准号:
2220811 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cooperative Agreement
CAREER: Demystifying Deep Machine Learning Models using Convex Optimization for Reliable AI
职业:使用凸优化揭开深度机器学习模型的神秘面纱,实现可靠的人工智能
- 批准号:
2236829 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
RI: Small: Taming Massive Pre-trained Models under Label Scarcity via an Optimization Lens
RI:小型:通过优化镜头在标签稀缺的情况下驯服大量预训练模型
- 批准号:
2226152 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Optimization and Planning Models for more Sustainable Agrifood Logistics
更可持续农产品物流的优化和规划模型
- 批准号:
RGPIN-2022-03652 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Optimization Models for Contemporary and Sustainable Production-Distribution Systems
现代和可持续生产分配系统的优化模型
- 批准号:
RGPIN-2020-04501 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Queueing Models and Optimization for Healthcare System Design and Improvement
医疗系统设计和改进的排队模型和优化
- 批准号:
RGPIN-2016-06344 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Generalization of Dynamic Metabolic Flux Models and their Application for Economic Optimization of Bioprocesses
动态代谢通量模型的推广及其在生物过程经济优化中的应用
- 批准号:
RGPIN-2019-04609 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual