III: Small: Collaborative Research: Stream-Based Active Mining at Scale: Non-Linear Non-Submodular Maximization

III:小型:协作研究:基于流的大规模主动挖掘:非线性非子模最大化

基本信息

  • 批准号:
    1908594
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-15 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The past decades have witnessed enormous transformations of intelligent data analysis in the realm of datasets at an unprecedented scale. Analysis of big data is computationally demanding, resource hungry, and much more complex. With recent emerging applications, most of the studied objective functions have been shown to be non-submodular or non-linear. Additionally, with the presence of dynamics in billion-scale datasets, such as items are arriving in an online fashion, scalable and stream-based adaptive algorithms which can quickly update solutions instead of recalculating from scratch must be investigated. All of the aforementioned issues call for a scalable and stream-based active mining techniques to cope with enormous applications of non-submodular maximization in the era of big data. With the society's growing dependence on the cyberspace and computer technologies, the premium placed on the intelligent big data analysis for many emerging applications. Therefore, the success of this project has a high impact in almost any field that needs lightweight and near-optimal big data analysis. The findings of this project will also enrich the research on network science, graph theory, optimization, and big data analysis. In addition to creating new courses, undergrad and high school students will be involved in hands-on activities over the experimental platform. Outreach events targeted at under-represented groups and K-1This project develops a theoretical framework together with highly scalable approximation algorithms and tight theoretical performance bound guarantees for the class of non-submodular and non-linear optimization. In particular, the project lays the foundation for the novel data mining techniques, suitable to the new era of big data with emerging applications, as well as advance the research front of stochastic and stream-based algorithm designs, with several key innovations: 1) Rigorous mathematical techniques to analyze and design highly scalable approximation algorithms to the class of non-monotonic, non-submodular maximization, which underlies many emerging applications. 2) Attempt a new research direction by bridging the non-linear optimization and the combinatorial optimization, thereby bringing the new angles for the study of non-submodular optimization as well as getting deeper understanding of the problem structures. 3) Novel stream-based active mining at scale for multiple applications, focused on the two general models which unify many optimization problems in the domain of online social networks and privacy. It also provides a novel theoretical framework for adaptive non-submodular maximization, which has not been studied in the literature. 4) Extensive evaluation through a combination of various tools and methods, including the real-world datasets and applications that will bridge the gap between theory and practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,数据集领域的智能数据分析发生了前所未有的巨大变化。大数据的分析计算量大,资源匮乏,而且更加复杂。 随着最近出现的应用,大多数研究的目标函数已被证明是非次模或非线性。此外,由于数十亿级数据集中存在动态,例如项目以在线方式到达,因此必须研究可扩展和基于流的自适应算法,这些算法可以快速更新解决方案,而不是从头开始重新计算。所有上述问题都需要一种可扩展的基于流的主动挖掘技术来科普大数据时代非子模块最大化的巨大应用。随着社会对网络空间和计算机技术的日益依赖,许多新兴应用对智能大数据分析的重视。因此,该项目的成功在几乎所有需要轻量级和接近最佳大数据分析的领域都具有很高的影响力。该项目的研究成果也将丰富网络科学、图论、优化和大数据分析的研究。除了创建新课程外,本科生和高中生还将参与实验平台上的实践活动。针对代表性不足的群体和K-1的推广活动该项目开发了一个理论框架,以及高度可扩展的近似算法和严格的理论性能约束保证,用于非子模块和非线性优化。特别是,该项目为适合大数据新时代和新兴应用的新型数据挖掘技术奠定了基础,并推进了随机和基于流的算法设计的研究前沿,并具有几项关键创新:1)严格的数学技术来分析和设计高度可扩展的近似算法,以非单调,非子模最大化类,这是许多新兴应用的基础。2)尝试将非线性优化与组合优化相结合的一个新的研究方向,从而为非子模优化的研究带来新的视角,加深对问题结构的理解。3)新颖的基于流的主动挖掘在多个应用程序的规模,集中在两个通用模型,统一在线社交网络和隐私领域的许多优化问题。它还提供了一个新的理论框架,自适应非子模最大化,这还没有在文献中研究。4)通过各种工具和方法的组合进行广泛的评估,包括现实世界的数据集和应用程序,将弥合理论与实践之间的差距。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Graph Representation Learning and Optimization for Influence Maximization
  • DOI:
    10.48550/arxiv.2305.02200
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Ling;Junji Jiang;Junxiang Wang;M. Thai;Lukas Xue;James Song;M. Qiu;Liang Zhao
  • 通讯作者:
    Chen Ling;Junji Jiang;Junxiang Wang;M. Thai;Lukas Xue;James Song;M. Qiu;Liang Zhao
On the Convergence of Distributed Stochastic Bilevel Optimization Algorithms over a Network
  • DOI:
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongchang Gao;Bin Gu;M. Thai
  • 通讯作者:
    Hongchang Gao;Bin Gu;M. Thai
Streaming k-Submodular Maximization under Noise subject to Size Constraint
  • DOI:
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lan N. Nguyen;M. Thai
  • 通讯作者:
    Lan N. Nguyen;M. Thai
FastHare: Fast Hamiltonian Reduction for Large-scale Quantum Annealing
Linear Query Approximation Algorithms for Non-monotone Submodular Maximization under Knapsack Constraint
  • DOI:
    10.48550/arxiv.2305.10292
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Canh V. Pham;Tan D. Tran;Dung T. K. Ha;M. Thai
  • 通讯作者:
    Canh V. Pham;Tan D. Tran;Dung T. K. Ha;M. Thai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

My Thai其他文献

An Approximation for Minimum Multicast Route in Optical Networks with Nonsplitting Nodes
  • DOI:
    10.1007/s10878-005-4925-3
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Longjiang Guo;Weili Wu;Feng Wang;My Thai
  • 通讯作者:
    My Thai

My Thai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('My Thai', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Information Integrity: A User-centric Intervention
协作研究:SaTC:核心:媒介:信息完整性:以用户为中心的干预
  • 批准号:
    2323794
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: EAGER: Trustworthy and Privacy-preserving Federated Learning
协作研究:SaTC:EAGER:值得信赖且保护隐私的联邦学习
  • 批准号:
    2140477
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Trustworthy and Explainable AI for Neurodegenerative Diseases
合作研究:SCH:值得信赖且可解释的人工智能治疗神经退行性疾病
  • 批准号:
    2123809
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: When Adversarial Learning Meets Differential Privacy: Theoretical Foundation and Applications
SaTC:核心:小型:协作:当对抗性学习遇到差异性隐私时:理论基础和应用
  • 批准号:
    1935923
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Lightweight Adaptive Algorithms for Network Optimization at Scale towards Emerging Services
NetS:小型:协作研究:面向新兴服务的大规模网络优化的轻量级自适应算法
  • 批准号:
    1814614
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Laying the Foundations of Social Network-Aware Cellular Device-to-Device Communications
EARS:协作研究:为社交网络感知的蜂窝设备到设备通信奠定基础
  • 批准号:
    1443905
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: RIPS Type 2: Vulnerability Assessment and Resilient Design of Interdependent Infrastructures
合作研究:RIPS 类型 2:相互依赖基础设施的漏洞评估和弹性设计
  • 批准号:
    1441231
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CIF: Small: Modeling and Dynamic Analyzing for Multiplex Social Networks
CIF:小型:多重社交网络的建模和动态分析
  • 批准号:
    1422116
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Optimization Models and Approximation Algorithms for Network Vulnerability and Adaptability
职业:网络脆弱性和适应性的优化模型和近似算法
  • 批准号:
    0953284
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
SGER: A New Approach for Identifying DoS Attackers Based on Group Testing Techniques
SGER:基于组测试技术识别 DoS 攻击者的新方法
  • 批准号:
    0847869
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
  • 批准号:
    2324770
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
  • 批准号:
    2316306
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
  • 批准号:
    2324769
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了