CAREER: Sequential Monte Carlo Methods for High Dimensional Systems
职业:高维系统的序贯蒙特卡罗方法
基本信息
- 批准号:0953316
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CAREER: Sequential Monte Carlo Methods for High Dimensional SystemsAbstractAdvances in the development of models and methods that can satisfactorily describe and analyze high dimensional systems are extremely valuable for many different disciplines including biology, meteorology, economics,social sciences, and engineering. These systems are characterized by nonlinearities and are difficult to understand.Computational methods governed by simple local rules have the potential of providing insightful interpretationsand of paving the way towards quantitative and qualitative descriptions and understanding of complex systems.This project is focused on development of such methods and in particular on the development of a synergistic research and educational program in sequential Monte Carlo-based signal processing for high dimensional systems.This research aims at laying the foundations of a sequential Monte Carlo methodology for high dimensional systems. In the literature, there are claims stating that particle filters cannot be used for complex systems because their random measures degenerate to single particles. While this is true for standard implementation of these filters, it does not hold true for alternative approaches. A new methodology based on the principle of divide and conquer is developed. In particular, the collapse of traditional particle filltering is avoided by setting an interconnected network of filters, each of them working on lower dimensional spaces. Research tasks include development of the theoretical grounds of the methods, establishment of guidelines for its use by practitioners,analysis of its accuracy, stability and scalability, and validation on a wide range of complex systems. The proposed methods are original and provide solutions to arguably the biggest open problem of particle filtering.
职业:高维系统的序贯Monte Carlo方法研究高维系统的序贯Monte Carlo方法的进展对于生物学、气象学、经济学、社会科学和工程学等不同学科都具有重要的意义。这些系统的特点是非线性和难以理解。由简单的局部规则控制的计算方法有可能提供有洞察力的解释,并为定量和定性描述和理解复杂系统铺平道路。本项目的重点是发展这种方法,特别是在顺序蒙特卡罗中发展协同研究和教育计划。基于信号处理的高维系统,本研究的目的是奠定了高维系统的序贯蒙特卡罗方法的基础。在文献中,有声称粒子滤波器不能用于复杂系统,因为它们的随机测量退化为单个粒子。虽然这对于这些过滤器的标准实现是正确的,但对于替代方法则不成立。提出了一种基于分而治之原则的新方法。特别是,通过设置一个相互连接的过滤器网络,避免了传统粒子过滤的崩溃,每个过滤器都工作在低维空间。研究任务包括开发方法的理论基础,制定从业人员使用指南,分析其准确性,稳定性和可扩展性,并在广泛的复杂系统上进行验证。所提出的方法是原创的,并提供了解决方案,可以说是最大的开放问题的粒子滤波。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Bugallo其他文献
Cognitive Load, Transfer, and Instructional Decision-Making in an Informal Middle School STEM Integration Program
非正式中学 STEM 整合项目中的认知负荷、迁移和教学决策
- DOI:
10.18260/1-2--43221 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Angela M. Kelly;Monica Bugallo - 通讯作者:
Monica Bugallo
Monica Bugallo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Bugallo', 18)}}的其他基金
PFI (Conference): Workshop on Diversity in Innovation and Entrepreneurship
PFI(会议):创新与创业多元化研讨会
- 批准号:
2209660 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Building a National Model for an Undergraduate Women In Science and Engineering Program
建立全国科学与工程本科女性项目模式
- 批准号:
2012339 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Strategies: Engineering Academy: Educating Engineers of the Future
策略:工程学院:教育未来的工程师
- 批准号:
1850116 - 财政年份:2019
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
E3: Excellence in Engineering Education - A Workshops Series for School Administrators
E3:卓越工程教育 - 学校管理人员研讨会系列
- 批准号:
1840953 - 财政年份:2018
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Studying and Evaluating Education, Guidance, Advancement, and Learning in Technology and Engineering
研究和评估技术与工程领域的教育、指导、进步和学习
- 批准号:
1647405 - 财政年份:2017
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
SUNY LSAMP 2016 Bridge to the Doctorate (BD) Cohort 5 at Stony Brook University
SUNY LSAMP 2016 通往石溪大学博士学位 (BD) 第 5 组的桥梁
- 批准号:
1612689 - 财政年份:2016
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
CIF: Small: Advancing Adaptive Importance Sampling for Signal Processing
CIF:小型:推进信号处理的自适应重要性采样
- 批准号:
1617986 - 财政年份:2016
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
2015-2017 SUNY LSAMP Bridge to the Doctorate at Binghamton University
2015-2017 SUNY LSAMP 升读宾汉姆顿大学博士学位
- 批准号:
1500455 - 财政年份:2015
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
相似海外基金
Real-time phylogenetics using sequential Monte Carlo with tree sequences
使用顺序蒙特卡罗和树序列进行实时系统发育
- 批准号:
EP/W006790/1 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Research Grant
Sequential Monte Carlo Methods for Model Based Reinforcement Learning
基于模型的强化学习的顺序蒙特卡罗方法
- 批准号:
573681-2022 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
University Undergraduate Student Research Awards
Online topic modelling via sequential Monte Carlo methods
通过顺序蒙特卡罗方法进行在线主题建模
- 批准号:
563714-2021 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
University Undergraduate Student Research Awards
Solving the sampling problem in molecular simulations by Sequential Monte Carlo
用顺序蒙特卡罗解决分子模拟中的采样问题
- 批准号:
EP/V048864/1 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Research Grant
Advances in Sequential Monte Carlo Methods for Complex Bayesian Models
复杂贝叶斯模型的顺序蒙特卡罗方法的进展
- 批准号:
DP200102101 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Discovery Projects
Robust, Scalable Sequential Monte Carlo with Application To Urban Air Quality
稳健、可扩展的顺序蒙特卡罗在城市空气质量中的应用
- 批准号:
EP/T004134/1 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Research Grant
New Sequential Monte Carlo methods
新的顺序蒙特卡罗方法
- 批准号:
527760-2018 - 财政年份:2018
- 资助金额:
$ 39.97万 - 项目类别:
University Undergraduate Student Research Awards
Research Initiation Awards: Spatial-temporal Information Fusion and Real-time Sensor Data Assimilation Using Sequential Monte Carlo Methods
研究启动奖:使用序列蒙特卡罗方法的时空信息融合和实时传感器数据同化
- 批准号:
1238332 - 财政年份:2013
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Sequential Monte Carlo in Random Environments
随机环境中的顺序蒙特卡罗
- 批准号:
EP/K023330/1 - 财政年份:2013
- 资助金额:
$ 39.97万 - 项目类别:
Research Grant
Research Initiation Awards: Spatial-temporal Information Fusion and Real-time Sensor Data Assimilation Using Sequential Monte Carlo Methods
研究启动奖:使用序列蒙特卡罗方法的时空信息融合和实时传感器数据同化
- 批准号:
1356977 - 财政年份:2013
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant














{{item.name}}会员




