CAREER: Sequential Monte Carlo Methods for High Dimensional Systems
职业:高维系统的序贯蒙特卡罗方法
基本信息
- 批准号:0953316
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CAREER: Sequential Monte Carlo Methods for High Dimensional SystemsAbstractAdvances in the development of models and methods that can satisfactorily describe and analyze high dimensional systems are extremely valuable for many different disciplines including biology, meteorology, economics,social sciences, and engineering. These systems are characterized by nonlinearities and are difficult to understand.Computational methods governed by simple local rules have the potential of providing insightful interpretationsand of paving the way towards quantitative and qualitative descriptions and understanding of complex systems.This project is focused on development of such methods and in particular on the development of a synergistic research and educational program in sequential Monte Carlo-based signal processing for high dimensional systems.This research aims at laying the foundations of a sequential Monte Carlo methodology for high dimensional systems. In the literature, there are claims stating that particle filters cannot be used for complex systems because their random measures degenerate to single particles. While this is true for standard implementation of these filters, it does not hold true for alternative approaches. A new methodology based on the principle of divide and conquer is developed. In particular, the collapse of traditional particle filltering is avoided by setting an interconnected network of filters, each of them working on lower dimensional spaces. Research tasks include development of the theoretical grounds of the methods, establishment of guidelines for its use by practitioners,analysis of its accuracy, stability and scalability, and validation on a wide range of complex systems. The proposed methods are original and provide solutions to arguably the biggest open problem of particle filtering.
职业:在模型和方法的开发中,可以令人满意地描述和分析高维系统的模型和方法中的高维系统吸引力的顺序蒙特卡洛方法对于许多不同的学科都非常有价值,这对于包括生物学,气象学,经济学,经济学,社会科学和工程的许多不同学科非常有价值。这些系统的特征是非线性的,并且很难理解。Compationationalcontipational propational concontiational progation tim Prace规则的潜力有可能提供洞察力的解释,并为定量和定性描述和对复杂系统的理解铺平道路的方式。该项目集中于此类方法的开发,尤其是针对层次研究和层次的跨度研究的开发,以进行层次的跨度研究。高维系统的顺序蒙特卡洛方法的基础。在文献中,有声称指出粒子过滤器不能用于复杂系统,因为它们的随机测量值将其退化为单个颗粒。尽管对于这些过滤器的标准实施是正确的,但对于替代方法并不成立。开发了一种基于鸿沟和征服原则的新方法。特别是,通过设置互连的过滤器网络来避免传统粒子填充的崩溃,每个网络都在较低的空间上工作。研究任务包括开发方法的理论基础,为从业人员使用其使用指南,分析其准确性,稳定性和可扩展性以及对广泛复杂系统的验证。所提出的方法是原始的,可以说是粒子过滤的最大开放问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Bugallo其他文献
Cognitive Load, Transfer, and Instructional Decision-Making in an Informal Middle School STEM Integration Program
非正式中学 STEM 整合项目中的认知负荷、迁移和教学决策
- DOI:
10.18260/1-2--43221 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Angela M. Kelly;Monica Bugallo - 通讯作者:
Monica Bugallo
Monica Bugallo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Bugallo', 18)}}的其他基金
PFI (Conference): Workshop on Diversity in Innovation and Entrepreneurship
PFI(会议):创新与创业多元化研讨会
- 批准号:
2209660 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Building a National Model for an Undergraduate Women In Science and Engineering Program
建立全国科学与工程本科女性项目模式
- 批准号:
2012339 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Strategies: Engineering Academy: Educating Engineers of the Future
策略:工程学院:教育未来的工程师
- 批准号:
1850116 - 财政年份:2019
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
E3: Excellence in Engineering Education - A Workshops Series for School Administrators
E3:卓越工程教育 - 学校管理人员研讨会系列
- 批准号:
1840953 - 财政年份:2018
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
Studying and Evaluating Education, Guidance, Advancement, and Learning in Technology and Engineering
研究和评估技术与工程领域的教育、指导、进步和学习
- 批准号:
1647405 - 财政年份:2017
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
SUNY LSAMP 2016 Bridge to the Doctorate (BD) Cohort 5 at Stony Brook University
SUNY LSAMP 2016 通往石溪大学博士学位 (BD) 第 5 组的桥梁
- 批准号:
1612689 - 财政年份:2016
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
CIF: Small: Advancing Adaptive Importance Sampling for Signal Processing
CIF:小型:推进信号处理的自适应重要性采样
- 批准号:
1617986 - 财政年份:2016
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
2015-2017 SUNY LSAMP Bridge to the Doctorate at Binghamton University
2015-2017 SUNY LSAMP 升读宾汉姆顿大学博士学位
- 批准号:
1500455 - 财政年份:2015
- 资助金额:
$ 39.97万 - 项目类别:
Standard Grant
相似国自然基金
多种动脉硬化标志物顺序响应型探针的构建及精准成像应用研究
- 批准号:22368035
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于顺序ICT-ESIPT机理多功能酶靶向的荧光染料及其在急性髓细胞白血病分型中的应用
- 批准号:22378100
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
多功能介孔生物活性玻璃支架顺序调控巨噬细胞极化促成骨/成血管研究
- 批准号:52362038
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
探究细菌三型分泌系统开关蛋白FlhB调控底物分泌顺序的动态机制
- 批准号:32371277
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
原位表征指导顺序印刷调控有机光伏活性层的纵向结构实现高效大面积器件制备
- 批准号:22309143
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time phylogenetics using sequential Monte Carlo with tree sequences
使用顺序蒙特卡罗和树序列进行实时系统发育
- 批准号:
EP/W006790/1 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
Research Grant
Sequential Monte Carlo Methods for Model Based Reinforcement Learning
基于模型的强化学习的顺序蒙特卡罗方法
- 批准号:
573681-2022 - 财政年份:2022
- 资助金额:
$ 39.97万 - 项目类别:
University Undergraduate Student Research Awards
Online topic modelling via sequential Monte Carlo methods
通过顺序蒙特卡罗方法进行在线主题建模
- 批准号:
563714-2021 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
University Undergraduate Student Research Awards
Solving the sampling problem in molecular simulations by Sequential Monte Carlo
用顺序蒙特卡罗解决分子模拟中的采样问题
- 批准号:
EP/V048864/1 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Research Grant
Advances in Sequential Monte Carlo Methods for Complex Bayesian Models
复杂贝叶斯模型的顺序蒙特卡罗方法的进展
- 批准号:
DP200102101 - 财政年份:2020
- 资助金额:
$ 39.97万 - 项目类别:
Discovery Projects