Career: Multiscale Stochastic Simulation for Complex Biochemical Systems with Visualization Tools
职业:使用可视化工具对复杂生化系统进行多尺度随机模拟
基本信息
- 批准号:0953590
- 负责人:
- 金额:$ 54.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Career: Multiscale Stochastic Simulation for Complex Biochemical Systems with Visualization ToolsThis project aims to develop efficient simulation techniques for stochastic biochemical models, particularly the cell cycle model. Cell cycle is the sequence of events whereby a living cell replicates its components and divides them between two daughter cells, so that each daughter has the information and machinery necessary to repeat the process. Cell cycle is related to many diseases such as cardiovascular diseases and cancer. Understanding the molecular mechanisms regulating cell cycle is a major challenge of contemporary cell biology. Biologists have developed complex mathematical models of cell-cycle control in budding yeast, fission yeast, and mammalian cells. These systems are so complex that its simulation and analysis present great challenges to computational science. The career goal of the PI is to address these challenges by developing innovative computational methods and rigorous mathematical theories to integrate the full gamut of continuous, discrete, deterministic, and stochastic models, and support dynamic, seamless and automatic switching between different models and algorithms as dictated by the scales of underlying problems. This project focuses on three specific aims in this project. The primary aim is to develop innovative computational algorithms and mathematical theories about a critical multiscale challenge: stiffness. This project will develop the theory of the stiffness in discrete stochastic simulation of chemically reacting systems and an automatic stiffness detection algorithm through a running-time profile analysis. The second aim is to develop hybrid algorithms to simulate biological systems with multistate species, a special challenge in biological systems with multiple binding sites. This project will develop hybrid methods to combine particle-based methods, designed for multistate species, and population-based methods, designed for general chemical reactions. The third aim of this project is to develop algorithm and model visualization tools to introduce the algorithms and model development in computational biology to graduate and undergraduate students. The algorithms developed in this project will enable biologists to efficiently model and simulate multiscale systems and will directly benefit the whole research discipline of systems biology. Moreover, the techniques about the stiffness are also applicable to multiscale simulation of complex systems in other areas. This research project also provides learning opportunities and training for students across the disciplines of computer science, mathematics, and biology. The biological models and simulation methods will be introduced in graduate courses on computational cell biology. The algorithm visualization tool will help students understand the important computational concept of stiffness. The model visualization tool and results related to the cell cycle model will be used in undergraduate research and education in Virginia Tech and Radford University, through collaboration with a professor in the Mathematics department at Radford University. This collaboration will help to attract more women and minority students into computational science areas.
职业:多尺度随机模拟与可视化工具的复杂生化系统本项目旨在开发有效的模拟技术的随机生化模型,特别是细胞周期模型。细胞周期是活细胞复制其组分并将其在两个子细胞之间分裂的事件序列,因此每个子细胞都具有重复该过程所需的信息和机制。细胞周期与心血管疾病、肿瘤等多种疾病有关。了解细胞周期调控的分子机制是当代细胞生物学的主要挑战。生物学家已经在芽殖酵母、裂殖酵母和哺乳动物细胞中建立了复杂的细胞周期控制数学模型。这些系统是如此复杂,其模拟和分析提出了巨大的挑战,计算科学。PI的职业目标是通过开发创新的计算方法和严格的数学理论来解决这些挑战,以整合连续,离散,确定性和随机模型的全部范围,并支持不同模型和算法之间的动态,无缝和自动切换。该项目重点关注该项目的三个具体目标。其主要目的是开发创新的计算算法和数学理论的一个关键的多尺度挑战:刚度。本计画将发展化学反应系统离散随机模拟中的刚度理论,并借由运行时间剖面分析,发展自动刚度侦测演算法。第二个目标是开发混合算法来模拟具有多态物种的生物系统,这在具有多个结合位点的生物系统中是一个特殊的挑战。该项目将开发混合方法,以结合联合收割机基于粒子的方法,设计用于多态物种,和基于群体的方法,设计用于一般化学反应。 本计画的第三个目标是发展演算法与模型的视觉化工具,以介绍演算法与模型在计算生物学中的发展给研究生与本科生。该项目开发的算法将使生物学家能够有效地建模和模拟多尺度系统,并将直接有利于系统生物学的整个研究学科。此外,刚度相关技术也适用于其他领域复杂系统的多尺度仿真。该研究项目还为计算机科学,数学和生物学学科的学生提供学习机会和培训。生物模型和模拟方法将在计算细胞生物学研究生课程中介绍。算法可视化工具将帮助学生理解刚度的重要计算概念。与细胞周期模型相关的模型可视化工具和结果将通过与拉德福大学数学系教授的合作,用于弗吉尼亚理工大学和拉德福大学的本科研究和教育。这种合作将有助于吸引更多的女性和少数民族学生进入计算科学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Cao其他文献
Fast depth estimation from single image using structured forest
使用结构化森林从单个图像快速估计深度
- DOI:
10.1109/icip.2016.7533115 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shuai Fang;Ren Jin;Yang Cao - 通讯作者:
Yang Cao
Microarray Analysis on the Differences of Gene Expression in Longissimus Dorsi Muscle Tissue Between 1 and 24 Months Chinese Red Steppes
1、24月龄中国红草原背最长肌组织基因表达差异的微阵列分析
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lihong Qin;Guoliang Zhang;Yang Cao;Jia;Yumin Zhao;Zhihui Zhao - 通讯作者:
Zhihui Zhao
Blow-up of solutions of the nonlinear Sobolev equation
非线性 Sobolev 方程解的放大
- DOI:
10.1016/j.aml.2013.09.001 - 发表时间:
2014-02 - 期刊:
- 影响因子:3.7
- 作者:
Yang Cao;Yuanyuan Nie - 通讯作者:
Yuanyuan Nie
CoP decorated with Co 3O 4 as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitizatio
CoP 装饰有 Co 3O 4 作为助催化剂,通过染料敏化增强光催化析氢
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:6.7
- 作者:
Shaoqin Peng;Yang Cao;Fengxian Zhou;Zhaodi Xu;Yuexiang Li - 通讯作者:
Yuexiang Li
Multi-source inverse-geometry CT: From system concept to research prototype
多源逆几何CT:从系统概念到研究原型
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
B. De Man;A. Caiafa;Yang Cao;K. Frutschy;D. Harrison;L. Inzinna;R. Longtin;B. Neculaes;Joseph Reynolds;J. Roy;Jonathan Short;J. Uribe;W. Waters;Z. Yin;Xi Zhang;Yun Zou;B. Senzig;J. Baek;N. Pelc - 通讯作者:
N. Pelc
Yang Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Cao', 18)}}的其他基金
FET: AF: Small: Spatial Stochastic Modeling and Simulation with application in the Caulobacter Cell Cycle control
FET:AF:小:空间随机建模和模拟及其在柄杆菌细胞周期控制中的应用
- 批准号:
1909122 - 财政年份:2019
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
The 2017 international conference on systems biology; Virginia Tech; August 6-12, 2017
2017年系统生物学国际会议;
- 批准号:
1739416 - 财政年份:2017
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
Phase I I/UCRC University of Connecticut Site: Center for Novel High Voltage/Temperature Materials and Structures (HVT)
I 期 I/UCRC 康涅狄格大学网站:新型高压/高温材料和结构中心 (HVT)
- 批准号:
1650544 - 财政年份:2017
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
Collaborative Research: Identifying and modeling the advantages of regulating protein abundance in Caulobacter crescentus
合作研究:识别和模拟调节新月柄杆菌蛋白质丰度的优势
- 批准号:
1613741 - 财政年份:2016
- 资助金额:
$ 54.71万 - 项目类别:
Continuing Grant
AF: Small: Algorithmic Foundations of Hybrid Stochastic Modeling and Simulation Methods with Applications to Cell Cycle Models
AF:小:混合随机建模和模拟方法的算法基础及其在细胞周期模型中的应用
- 批准号:
1526666 - 财政年份:2015
- 资助金额:
$ 54.71万 - 项目类别:
Continuing Grant
Multiscale Modeling, Simulation, and Sensivitity Analysis of Biochemical Systems Motivated by Pulsatile Insulin Secretion
脉动胰岛素分泌驱动的生化系统的多尺度建模、模拟和敏感性分析
- 批准号:
0726763 - 财政年份:2007
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Continuing Grant
Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
- 批准号:
21K04211 - 财政年份:2021
- 资助金额:
$ 54.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diversity and Universality of Multiscale Earthquake Processes and Stochastic Modeling
多尺度地震过程的多样性和普遍性与随机模拟
- 批准号:
20K14576 - 财政年份:2020
- 资助金额:
$ 54.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multiscale Analysis of Infinite-Dimensional Stochastic Systems
无限维随机系统的多尺度分析
- 批准号:
1954299 - 财政年份:2020
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
Asymptotic analysis of multiscale Lévy-driven stochastic Cucker-Smale and non-linear friction models
多尺度 Lévy 驱动的随机 Cucker-Smale 和非线性摩擦模型的渐近分析
- 批准号:
418509727 - 财政年份:2018
- 资助金额:
$ 54.71万 - 项目类别:
Research Grants
NSFGEO-NERC: Multiscale Stochastic Modeling and Analysis of the Ocean Circulation
NSFGEO-NERC:海洋环流的多尺度随机建模与分析
- 批准号:
NE/R011567/1 - 财政年份:2018
- 资助金额:
$ 54.71万 - 项目类别:
Research Grant
Stochastic Constitutive Laws in Nonlinear Mechanics: Application to the Multiscale Modeling of Arterial Walls for Robust Vascular Grafting
非线性力学中的随机本构定律:在稳健血管移植的动脉壁多尺度建模中的应用
- 批准号:
1726403 - 财政年份:2017
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
NSFGEO-NERC: Multiscale Stochastic Modeling and Analysis of the Ocean Circulation
NSFGEO-NERC:海洋环流的多尺度随机建模与分析
- 批准号:
1658357 - 财政年份:2017
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
Stochastic homogenization for uncertainty quantification in multiscale analysis
多尺度分析中不确定性量化的随机均质化
- 批准号:
16KT0129 - 财政年份:2016
- 资助金额:
$ 54.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a novel method for strength estimation of heterogeneous materials by multiscale stochastic stress analysis
建立多尺度随机应力分析异质材料强度估算新方法
- 批准号:
16K05995 - 财政年份:2016
- 资助金额:
$ 54.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)