Multiscale Analysis of Infinite-Dimensional Stochastic Systems

无限维随机系统的多尺度分析

基本信息

  • 批准号:
    1954299
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

When analyzing complex systems, it is important to be able to have a simplified description of them. Oftentimes, such a simplification is realized by considering a smaller number of factors that are considered more relevant to the understanding of these systems and by neglecting all those factors that are considered less relevant. However, some factors that may appear less important at a certain time scale, turn out to play a crucial role at some longer time scale. Thus, it is fundamental to understand correctly the interplay among multiple scales of complex systems in order to have more effective models. This project will introduce and develop new methods of asymptotic analysis for stochastic partial differential equations. These are highly complex objects and any effort that goes in the direction of their simplified and more effective analysis is important, both for their deeper understanding and for the wide range of their possible applications. This analysis requires the development of new methods and the substantial introduction of new techniques which have to range over many fields in mathematics, from analysis in infinite-dimensional spaces to stochastic analysis and the theory of partial differential equations. The project provides research training opportunities for graduate students. The main goal of this research project is the study of several asymptotic problems for systems that are described by stochastic partial differential equations having multiple scales. Small stochastic and deterministic perturbations of a system, which have a negligible effect on a given time scale can become crucial on a longer time scale. Limit theorems in the framework of the theory of large deviation and metastability, various realizations of the averaging principle, small mass limits as in the Smoluchowski-Kramers approximation will be the objects of the research. What characterizes and unifies the present approach to all these asymptotic problems is the effort to understand how they all interplay and interact with each other.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在分析复杂系统时,重要的是能够对它们进行简化描述。通常,这种简化是通过考虑被认为与理解这些系统更相关的较少数量的因素以及忽略所有被认为不太相关的因素来实现的。然而,有些因素在一定的时间尺度上可能显得不那么重要,但在更长的时间尺度上却起着至关重要的作用。因此,正确理解复杂系统多尺度间的相互作用是建立更有效模型的基础。本计画将介绍及发展随机偏微分方程式渐近分析的新方法。这些都是高度复杂的对象,任何朝着简化和更有效的分析方向的努力都是重要的,无论是对它们的深入理解还是对它们可能的广泛应用。这种分析需要发展新的方法和大量引进新的技术,这些技术必须涉及数学的许多领域,从无限维空间的分析到随机分析和偏微分方程理论。该项目为研究生提供研究培训机会。本研究计画的主要目的是研究多尺度随机偏微分方程所描述系统的几个渐近问题。系统的小的随机和确定性扰动,在给定的时间尺度上可以忽略不计的影响,可以成为一个更长的时间尺度上的关键。 极限定理的大偏差和亚稳性理论的框架内,各种实现的平均原则,小质量的限制,在Smoluchowski-Kramers近似将是研究的对象。什么特点和统一的所有这些渐近问题的方法是努力了解它们如何相互作用和相互影响的。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large deviations principle for the invariant measures of the 2D stochastic Navier–Stokes equations with vanishing noise correlation
Incompressible viscous fluids in R2 and SPDEs on graphs, in presence of fast advection and non smooth noise
图表中 R2 和 SPDE 中的不可压缩粘性流体,存在快速平流和非平滑噪声
  • DOI:
    10.1214/20-aihp1118
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cerrai, Sandra;Xi, Guangyu
  • 通讯作者:
    Xi, Guangyu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandra Cerrai其他文献

Pathwise uniqueness for stochastic reaction-diffusion equations in Banach spaces with an Hölder drift component
Schauder estimates for a degenerate second order elliptic operator on a cube
  • DOI:
    10.1016/j.jde.2007.08.002
  • 发表时间:
    2007-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sandra Cerrai;Philippe Clément
  • 通讯作者:
    Philippe Clément
A Hille-Yosida theorem for weakly continuous semigroups
  • DOI:
    10.1007/bf02573496
  • 发表时间:
    1994-12-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Sandra Cerrai
  • 通讯作者:
    Sandra Cerrai
Nonlinear random perturbations of PDEs and quasi-linear equations in Hilbert spaces depending on a small parameter
希尔伯特空间中依赖于小参数的偏微分方程和拟线性方程的非线性随机摄动
  • DOI:
    10.1016/j.jfa.2024.110418
  • 发表时间:
    2024-06-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Sandra Cerrai;Giuseppina Guatteri;Gianmario Tessitore
  • 通讯作者:
    Gianmario Tessitore
On a class of degenerate elliptic operators arising from Fleming-Viot processes
  • DOI:
    10.1007/pl00001370
  • 发表时间:
    2001-09-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Sandra Cerrai;Philippe Clément
  • 通讯作者:
    Philippe Clément

Sandra Cerrai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandra Cerrai', 18)}}的其他基金

Analysis of stochastic partial differential equations with multiple scales
多尺度随机偏微分方程分析
  • 批准号:
    1712934
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Seminar on Stochastic Processes 2016
2016年随机过程研讨会
  • 批准号:
    1550644
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
  • 批准号:
    1407615
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Asymptotic problems for stochastic partial differential equations
随机偏微分方程的渐近问题
  • 批准号:
    0907295
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Sensitivity Analysis of Infinite-Dimensional Bayesian Inverse Problems
无限维贝叶斯反问题的设计与敏感性分析
  • 批准号:
    2111044
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Development, evolution, and new development of stochastic analysis of infinite particle systems
无限粒子系统随机分析的发展、演变和新发展
  • 批准号:
    21H04432
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Stochastic Analysis on Infinite Dimensional Spaces from a Geometric View
从几何角度看无限维空间的随机分析
  • 批准号:
    20K03639
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Higher-order asymptotic analysis of nonconformal iterative function systems with infinite graphs by asymptotic theory construction of transfer operators
基于传递算子渐近理论构造的无限图非共形迭代函数系统的高阶渐近分析
  • 批准号:
    20K03636
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust stability analysis of infinite-dimensional sampled-data systems
无限维采样数据系统的鲁棒稳定性分析
  • 批准号:
    20K14362
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: 40th International Conference on Quantum Probability and Infinite Dimensional Analysis
会议:第40届国际量子概率与无限维分析会议
  • 批准号:
    1916547
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
New developments in infinite dimensional stochastic analysis based on constructions of spaces of generalized functionals and applications to quantum information theory
基于广义泛函空间构造的无限维随机分析新进展及其在量子信息论中的应用
  • 批准号:
    19K03592
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic analysis for phase transition in particle systems with an infinite number of particles
具有无限数量粒子的粒子系统中相变的随机分析
  • 批准号:
    19H01793
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study on the no-arbitrage condition and completeness of market models based on infinite dimensional stochastic analysis
基于无限维随机分析的市场模型无套利条件和完备性研究
  • 批准号:
    18J20973
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of Infinite dimensional algebras and quantum field theories and their applications
无限维代数和量子场论分析及其应用
  • 批准号:
    17K05275
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了