AF: Small: Algorithmic Foundations of Hybrid Stochastic Modeling and Simulation Methods with Applications to Cell Cycle Models
AF:小:混合随机建模和模拟方法的算法基础及其在细胞周期模型中的应用
基本信息
- 批准号:1526666
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex systems emerging from many biochemical applications often exhibit multiscale features: the systems incorporate a variety of physical processes or subsystems across a broad range of scales. A typical multiscale system may require scales with macroscopic, mesoscopic, and microscopic kinetics, deterministic and stochastic dynamics, continuous and discrete state space, fast-scale and slow-scale reactions, and species of large and small populations. These complex features present great challenges for the modeling and simulation of biochemical systems. The goal of this project is to face these challenges by developing rigorous mathematical theories and innovative numerical algorithms for hybrid modeling methods. Mathematical foundations for error analysis of hybrid methods and algorithms for partitioning a biochemical system into subsystems will be developed and applied to chemical systems in different scales. The proposed work will advance the frontier of computational methods for the simulation of complex biochemical systems and enable automatic regime switching among multiple scales in complex biochemical systems. The numerical analysis will also contribute to general understanding of errors in discrete stochastic simulation methods. The project will support education and training of graduate and undergraduate students. The simulation methods developed in this project will be incorporated in the modeling and simulation packages JigCell and CoPaSi, all are open for public access. The curriculum material and source code modules will also be available on the university website.This project is motivated by realistic modeling and simulation of a complex biological control system: the cycle of growth and division in yeast cells. The project focuses on three specific aims. The primary aim is to develop mathematical foundations for error analysis of hybrid methods. Errors will be analyzed in two ways: one approach is based on approximation of chemical master equations for linear systems, and the other is based on a Poisson-process formulation of stochastic simulation trajectories. Errors caused by different partitioning strategies and hybrid solvers will be studied corresponding to different scale regions and interactions among them. Error analysis will also help to determine parameters in partitioning strategies. The second aim is to develop algorithms for hybrid stochastic simulation of biochemical systems, mechanisms to automatically partition reactions and state variables into different scale regions, and software to efficiently simulate multiscale systems. Reactions in a biochemical system are partitioned into four regions according to reactant population and reaction propensity scales. The partitioning strategy is based on analysis of these four regions and actual scale differences. Implementation details of hybrid methods will be carefully studied to achieve high efficiency. The third aim of this project is to develop a realistic stochastic model of the budding yeast cell cycle, which will include protein interactions as well as gene and mRNA dynamics and which will be judged with respect to the phenotypes of wild-type budding yeast cells and ~120 mutant strains. Simulation results of the developed model will be compared with wet-lab experimental data. The ambitious goal is to have a detailed cell cycle model that reflects dynamics at gene and mRNA levels, accounts accurately for known probabilistic features of cell proliferation in yeast cells, and accurately predicts the aberrant behaviors of mutant strains. Algorithms, theories, and software of hybrid methods developed in this project will be applied and tested in the modeling and simulation of this complex cell cycle model.
从许多生物化学应用中出现的复杂系统通常表现出多尺度特征:系统包含各种各样的物理过程或子系统,跨越广泛的尺度。一个典型的多尺度系统可能需要具有宏观、中观和微观动力学、确定性和随机动力学、连续和离散状态空间、快尺度和慢尺度反应以及大种群和小种群的物种的尺度。这些复杂的特征给生化系统的建模和仿真带来了巨大的挑战。该项目的目标是通过开发严格的数学理论和创新的混合建模方法的数值算法来面对这些挑战。将开发用于将生化系统划分为子系统的混合方法和算法的误差分析的数学基础,并将其应用于不同尺度的化学系统。这项工作将推进复杂生化系统模拟计算方法的前沿,并实现复杂生化系统中多尺度之间的自动状态切换。 数值分析也将有助于对离散随机模拟方法中误差的一般理解。该项目将支持研究生和本科生的教育和培训。在这个项目中开发的模拟方法将被纳入建模和模拟包JigCell和CoPaSi,所有这些都对公众开放。该课程的教材和源代码模块也将在大学网站上提供。该项目的动机是对一个复杂的生物控制系统进行逼真的建模和模拟:酵母细胞的生长和分裂周期。该项目侧重于三个具体目标。主要目的是发展混合方法的误差分析的数学基础。误差将以两种方式进行分析:一种方法是基于线性系统的化学主方程近似,另一种是基于泊松过程制定的随机模拟轨迹。针对不同的尺度区域以及它们之间的相互作用,研究了不同的划分策略和混合求解器所引起的误差。错误分析还将有助于确定分区策略中的参数。第二个目标是开发混合随机模拟生化系统的算法,机制,自动分区反应和状态变量到不同的尺度区域,和软件,以有效地模拟多尺度系统。根据反应物种群和反应倾向尺度,将生化系统中的反应划分为四个区域。分区策略是基于对这四个区域的分析和实际规模差异。混合方法的实施细节将被仔细研究,以实现高效率。本项目的第三个目的是开发一个现实的随机模型的芽殖酵母细胞周期,这将包括蛋白质相互作用以及基因和mRNA的动态,这将是判断相对于野生型芽殖酵母细胞和~120突变株的表型。所开发的模型的模拟结果将与湿实验室的实验数据进行比较。雄心勃勃的目标是建立一个详细的细胞周期模型,反映基因和mRNA水平的动态,准确地解释酵母细胞中细胞增殖的已知概率特征,并准确预测突变株的异常行为。本计画所发展之混合方法之演算法、理论与软体,将应用于此复杂细胞周期模型之建模与模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Cao其他文献
Development of a Endoscopic Manipulator Control System with Intention Recognition Based on Pupil Movement
基于瞳孔运动意图识别的内窥镜机械臂控制系统的研制
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yang Cao;Quanquan Liu;Yo Kobayashi;Kazuya Kawamura;Shigeki Sugano and Masakatsu G. Fujie - 通讯作者:
Shigeki Sugano and Masakatsu G. Fujie
CoP decorated with Co 3O 4 as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitizatio
CoP 装饰有 Co 3O 4 作为助催化剂,通过染料敏化增强光催化析氢
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:6.7
- 作者:
Shaoqin Peng;Yang Cao;Fengxian Zhou;Zhaodi Xu;Yuexiang Li - 通讯作者:
Yuexiang Li
Multi-source inverse-geometry CT: From system concept to research prototype
多源逆几何CT:从系统概念到研究原型
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
B. De Man;A. Caiafa;Yang Cao;K. Frutschy;D. Harrison;L. Inzinna;R. Longtin;B. Neculaes;Joseph Reynolds;J. Roy;Jonathan Short;J. Uribe;W. Waters;Z. Yin;Xi Zhang;Yun Zou;B. Senzig;J. Baek;N. Pelc - 通讯作者:
N. Pelc
Metabolic and Bariatric Surgery for People Living With HIV—A Propensity-Matched Cohort Study
HIV 感染者的代谢和减肥手术——一项倾向匹配队列研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
E. Stenberg;C. Carlander;Yang Cao;J. Ottosson;E. Näslund - 通讯作者:
E. Näslund
A multi-constraint failure-pursuing sampling method for reliability-based design optimization using adaptive Kriging
使用自适应克里金法进行基于可靠性的设计优化的多约束故障追踪采样方法
- DOI:
10.1007/s00366-020-01135-3 - 发表时间:
2020-08 - 期刊:
- 影响因子:8.7
- 作者:
Xiaoke Li;Xinyu Han;Zhenzhong Chen;Wuyi Ming;Yang Cao;Jun Ma - 通讯作者:
Jun Ma
Yang Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Cao', 18)}}的其他基金
FET: AF: Small: Spatial Stochastic Modeling and Simulation with application in the Caulobacter Cell Cycle control
FET:AF:小:空间随机建模和模拟及其在柄杆菌细胞周期控制中的应用
- 批准号:
1909122 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The 2017 international conference on systems biology; Virginia Tech; August 6-12, 2017
2017年系统生物学国际会议;
- 批准号:
1739416 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Phase I I/UCRC University of Connecticut Site: Center for Novel High Voltage/Temperature Materials and Structures (HVT)
I 期 I/UCRC 康涅狄格大学网站:新型高压/高温材料和结构中心 (HVT)
- 批准号:
1650544 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Identifying and modeling the advantages of regulating protein abundance in Caulobacter crescentus
合作研究:识别和模拟调节新月柄杆菌蛋白质丰度的优势
- 批准号:
1613741 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Career: Multiscale Stochastic Simulation for Complex Biochemical Systems with Visualization Tools
职业:使用可视化工具对复杂生化系统进行多尺度随机模拟
- 批准号:
0953590 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Multiscale Modeling, Simulation, and Sensivitity Analysis of Biochemical Systems Motivated by Pulsatile Insulin Secretion
脉动胰岛素分泌驱动的生化系统的多尺度建模、模拟和敏感性分析
- 批准号:
0726763 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithmic and Information-Theoretic Challenges in Causal Inference
NSF-BSF:AF:小:因果推理中的算法和信息论挑战
- 批准号:
2321079 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2247576 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2247577 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithmic Persuasion: Re-creating the Success of Mechanism Design
NSF-BSF:AF:小:算法说服:重新创造机制设计的成功
- 批准号:
2303372 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
- 批准号:
2139462 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: An Algorithmic Theory of Brain Behavior: Concept Representation and Learning in Spiking Neural Networks
AF:小:大脑行为的算法理论:尖峰神经网络中的概念表示和学习
- 批准号:
2139936 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant