CAREER: Underactuacted Precision Robotic Grasping and Manipulation
职业:欠驱动精密机器人抓取和操纵
基本信息
- 批准号:0953856
- 负责人:
- 金额:$ 49.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The vision of robotic assistants for domestic, health care, and workplace applications will not come to fruition without the ability to manipulate typical objects in human environments. However, grasping is challenging in unstructured environments because object models typically required to control the robot are not known beforehand and must be acquired through sensors that are imprecise and incomplete. The majority of research in robotic grasping and manipulation has attempted to address this problem through elaborate multifingered hands combined with tactile sensing and sophisticated planning and control algorithms, often following an anthropomorphic approach. This proposal utilizes an alternative approach involving a focus on the mechanics of the hand itself to accomplish most of the needed ?control.? By appropriately incorporating features such as compliance and underactuation, the uncertainty inherent in unstructured grasping tasks can be more easily accommodated. The proposed work addresses the problem of precision grasping of small objects from the surrounding environment and then begins to address the broader problem of dexterity by examining two-fingered precision manipulation, while investigating the role of compliance, underactuation, and configuration on performance in the presence of uncertainty. This work will be disseminated through publications in scholarly journals and conferences and will contribute to the fundamental understanding of the mechanical interaction of robot hands with small objects and the surrounding environment. These results are expected to lead to the development of low-dimensional hands for precision robotic grasping and manipulation with applications including assistive robots and prosthetics.
如果没有在人类环境中操纵典型物体的能力,用于家庭、医疗保健和工作场所应用的机器人助手的愿景就不会实现。然而,抓取在非结构化环境中是具有挑战性的,因为控制机器人通常所需的对象模型事先是未知的,必须通过不精确和不完整的传感器来获取。大多数机器人抓取和操纵的研究都试图通过精心设计的多指手结合触觉传感和复杂的规划和控制算法来解决这个问题,通常遵循拟人化的方法。这项建议利用了一种替代方法,涉及到手本身的力学重点,以完成大部分需要?控制通过适当地结合功能,如遵守和欠驱动,非结构化抓取任务中固有的不确定性,可以更容易地容纳。拟议的工作解决了从周围环境中的小物体的精确把握的问题,然后开始解决更广泛的问题,通过检查两个手指的精确操作的灵巧,同时调查的作用,遵守,欠驱动,和配置的性能存在的不确定性。这项工作将通过学术期刊和会议上的出版物传播,并将有助于对机器人手与小物体和周围环境的机械相互作用的基本理解。这些结果预计将导致低维的手的发展,精确的机器人抓取和操作的应用,包括辅助机器人和假肢。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Dollar其他文献
Aaron Dollar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Dollar', 18)}}的其他基金
Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
- 批准号:
2132823 - 财政年份:2022
- 资助金额:
$ 49.86万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Towards Practical Encoderless Robotics Through Vision-Based Training and Adaptation
RI:中:协作研究:通过基于视觉的训练和适应实现实用的无编码机器人技术
- 批准号:
1900681 - 财政年份:2019
- 资助金额:
$ 49.86万 - 项目类别:
Standard Grant
FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry
FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业
- 批准号:
1928448 - 财政年份:2019
- 资助金额:
$ 49.86万 - 项目类别:
Standard Grant
EFRI C3 SoRo: Muscle-like Cellular Architectures and Compliant, Distributed Sensing and Control for Soft Robots
EFRI C3 SoRo:软机器人的类肌肉细胞架构和兼容的分布式传感和控制
- 批准号:
1832795 - 财政年份:2018
- 资助金额:
$ 49.86万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands
NRI:INT:COLLAB:利用自适应手实现稳健抓取和灵巧操作的集成建模和学习
- 批准号:
1734190 - 财政年份:2017
- 资助金额:
$ 49.86万 - 项目类别:
Standard Grant
NRI: Rethinking Multi-Legged Robots: Passive Terrain Adaptability through Underactuated Mechanisms and Exactly-Constrained Kinematics
NRI:重新思考多足机器人:通过欠驱动机构和精确约束运动学实现被动地形适应性
- 批准号:
1637647 - 财政年份:2016
- 资助金额:
$ 49.86万 - 项目类别:
Standard Grant
NRI: Small: Dexterous Manipulation with Underactuated Hands: Strategies, Control Primitives, and Design for Open-Source Hardware
NRI:小:用欠驱动的手进行灵巧操纵:策略、控制原语和开源硬件设计
- 批准号:
1317976 - 财政年份:2013
- 资助金额:
$ 49.86万 - 项目类别:
Standard Grant














{{item.name}}会员




