NRI: Rethinking Multi-Legged Robots: Passive Terrain Adaptability through Underactuated Mechanisms and Exactly-Constrained Kinematics

NRI:重新思考多足机器人:通过欠驱动机构和精确约束运动学实现被动地形适应性

基本信息

  • 批准号:
    1637647
  • 负责人:
  • 金额:
    $ 71.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Legged vehicles have long intrigued us with the promise of moving with animal-like agility, gracefully and swiftly going where wheeled vehicles cannot. Despite numerous successes, however, current legged robots are mostly unable to traverse rough terrain, and are mechanically complex, requiring elaborate hardware and control, and having short operation-times. Work on this project will investigate the development of multi-legged robots that utilize adaptive motors and transmissions, to reduce the complexity and cost, while also allowing the legs to adapt to rough terrain. These legged robot designs will be made freely available through OpenRobotHardware.org, and will be able to be easily and inexpensively fabricated with rapid prototyping techniques.The project takes a new approach to legged robots by proposing new architectures that reduce over-constraint in the closed kinematic chains with the ground by applying under-actuated mechanisms - equipping robots with legs that passively adapt to large variations in terrain roughness with minimal disturbance forces to the body. As a result of this kind of passive adaptability, the robot is able to find a stable footing on rough terrain without any sensing or planning: the legs simply fall into place. Furthermore, adaptability in the mechanism also enables the forces and torques applied by the legs to the body to be passively regulated so as to minimize disturbances that would tend to destabilize the vehicle or cause it to lose its heading. This ability will drastically simplify the control of legged robot systems, greatly increase power efficiency and their robustness to terrain variations, and decrease production and maintenance costs.
长期以来,腿部车辆一直以动物般的敏捷性移动,这使我们很感兴趣,它优雅而迅速地前往车辆无法进行。 尽管取得了许多成功,但是当前的腿部机器人几乎无法穿越粗糙的地形,并且机械上很复杂,需要精心设计的硬件和控制,并且操作时间很短。该项目的工作将调查利用自适应电动机和传输的多腿机器人的开发,以降低复杂性和成本,同时还可以使腿适应崎rough的地形。这些腿部机器人的设计将通过openrobobothardware.org免费提供,并可以通过快速的原型制作技术轻松且便宜地制造出来。该项目通过提出新的体系结构来为腿部机器人提供新的方法,通过提出新的体系结构,从而通过在封闭的机械上施加宽敞的机制,从而使机器人在封闭的机械上施加较大的机械性能,以供不应求的机器人,以供不应求的机器人,以供不应求的机器人,以供不应求的是,在较大的机械上既有型号的机械界限最小的干扰力对身体。由于这种被动的适应性,机器人能够在崎terrain的地形上找到一个稳定的地面,而无需任何感应或计划:腿简单地落入到位。此外,该机制的适应性还使腿部施加到人体的力和扭矩可以被动调节,从而最大程度地减少会使车辆稳定或导致其损失的干扰。这种能力将大大简化对腿部机器人系统的控制,大大提高功率效率以及对地形变化的稳健性,并降低生产和维护成本。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pinbot: A Walking Robot with Locking Pin Arrays for Passive Adaptability to Rough Terrains
Adaptive Legged Robots Through Exactly Constrained and Non-Redundant Design
  • DOI:
    10.1109/access.2017.2704088
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    O. Kanner;Nicolás Rojas;L. Odhner;A. Dollar
  • 通讯作者:
    O. Kanner;Nicolás Rojas;L. Odhner;A. Dollar
Between-leg coupling schemes for passively-adaptive non-redundant legged robots
Design of an Underactuated Legged Robot with Prismatic Legs for Passive Adaptability to Terrain
具有棱柱腿的欠驱动腿式机器人的被动地形适应性设计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Dollar其他文献

Aaron Dollar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Dollar', 18)}}的其他基金

Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
  • 批准号:
    2132823
  • 财政年份:
    2022
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Towards Practical Encoderless Robotics Through Vision-Based Training and Adaptation
RI:中:协作研究:通过基于视觉的训练和适应实现实用的无编码机器人技术
  • 批准号:
    1900681
  • 财政年份:
    2019
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry
FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业
  • 批准号:
    1928448
  • 财政年份:
    2019
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Standard Grant
EFRI C3 SoRo: Muscle-like Cellular Architectures and Compliant, Distributed Sensing and Control for Soft Robots
EFRI C3 SoRo:软机器人的类肌肉细胞架构和兼容的分布式传感和控制
  • 批准号:
    1832795
  • 财政年份:
    2018
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands
NRI:INT:COLLAB:利用自适应手实现稳健抓取和灵巧操作的集成建模和学习
  • 批准号:
    1734190
  • 财政年份:
    2017
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Standard Grant
NRI: Small: Dexterous Manipulation with Underactuated Hands: Strategies, Control Primitives, and Design for Open-Source Hardware
NRI:小:用欠驱动的手进行灵巧操纵:策略、控制原语和开源硬件设计
  • 批准号:
    1317976
  • 财政年份:
    2013
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Standard Grant
CAREER: Underactuacted Precision Robotic Grasping and Manipulation
职业:欠驱动精密机器人抓取和操纵
  • 批准号:
    0953856
  • 财政年份:
    2010
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Continuing Grant

相似海外基金

Rethinking the role of parents in children's socio-emotional development - through an exploration of the matrilineal Mosuo of Southwest China -
重新思考父母在儿童社会情感发展中的作用——通过对中国西南母系摩梭人的探索——
  • 批准号:
    22KJ0985
  • 财政年份:
    2023
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Rethinking PIM-Assisted GPU Computing for Multi-Tenant Artificial Intelligence
职业:重新思考用于多租户人工智能的 PIM 辅助 GPU 计算
  • 批准号:
    2239638
  • 财政年份:
    2023
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
  • 批准号:
    2212200
  • 财政年份:
    2022
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
  • 批准号:
    2212201
  • 财政年份:
    2022
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
  • 批准号:
    2212202
  • 财政年份:
    2022
  • 资助金额:
    $ 71.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了