NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands

NRI:INT:COLLAB:利用自适应手实现稳健抓取和灵巧操作的集成建模和学习

基本信息

  • 批准号:
    1734190
  • 负责人:
  • 金额:
    $ 63.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

Robots need to effectively interact with a large variety of objectsthat appear in warehouses and factories as well as homes and offices.This requires robust grasping and dexterous manipulation of everydayobjects through low cost robots and low complexity solutions.Traditionally, robots use rigid hands and analytical models for suchtasks, which often fail in the presence of even small errors. Newcompliant hands promise improved performance, while minimizingcomplexity, and increased robustness. Nevertheless, they areinherently difficult to sense and model. This project combines ideasfrom different robotics sub-fields to address this limitation. Itutilizes progress in machine learning and builds on a strong traditionin robot modeling. The objective is to provide adaptive, compliantrobots that are better in grasping objects in the presence of multipleunknown contact points and sliding or rolling objects in-hand. Thebroader impact will be strengthened by the open release of new ormodified robot hand designs, improved control algorithms and software,as well as corresponding data sets. Furthermore, academicdissemination will be accompanied by educational outreach toundergraduate and high school students.Towards the above objective, the first step will be the definition ofnew hybrid models appropriate for adaptive, compliant hands. Thiswill happen by improving analytical solutions and extending them toallow adaptation based on data via novel, time-efficient learningmethods. The objective is to capture model uncertainty inherent inreal-world interactions; a process that suffers from data scarcity.In order to reduce the amount of data required for learning, differentmodels will be tailored to specific tasks through an automateddiscovery of these tasks and of underlying motion primitives for eachone of them. This task identification process will operate iterativelywith learning and utilize improved models to discover new tasks. Itcan also provide feedback for improved hand design. Once theselearning-based and task-focused models are available, they will beused to learn and synthesize controllers for grasping and in-handmanipulation. To learn controllers, this work will consider amodel-based, reinforcement learning approach, which will be evaluatedagainst alternatives. For controller synthesis, existing tools forthis purpose will be integrated with task planning primitives andextended through learning processes to identify the preconditionsunder which different controllers can be chained together. The projectinvolves extensive evaluation on a variety of novel adaptive hands androbotic arms designed in the PIs' labs. Modern vision-based solutionswill be used to track grasped objects and provide feedback forlearning and closed-loop control. The evaluation will measure whetherthe developed hybrid models can significantly improve robustness ofgrasping and the effectiveness of dexterous manipulation.
机器人需要有效地与仓库、工厂以及家庭和办公室中出现的各种对象进行交互。这需要通过低成本的机器人和低复杂性的解决方案对日常对象进行健壮的抓取和灵活的操作。传统上,机器人使用僵硬的手和分析模型来完成这类任务,即使存在微小的错误也经常失败。顺从的新手承诺提高性能,同时将复杂性降至最低,并增加健壮性。然而,它们本身就很难感知和建模。这个项目结合了不同机器人领域的想法来解决这个限制。它利用了机器学习的进步,并建立在机器人建模的强大传统之上。其目标是提供自适应、顺应的机器人,在存在多个未知接触点和手中滑动或滚动物体的情况下更好地抓取对象。新的或改进的机械手设计、改进的控制算法和软件以及相应的数据集的公开发布将加强更广泛的影响。此外,学术传播将伴随着对研究生和高中生的教育推广。为了实现上述目标,第一步将是定义适用于适应能力强、顺从的手的新的混合模式。这将通过改进分析解决方案并将其扩展到允许通过新颖、省时的学习方法基于数据进行适应来实现。目标是捕捉真实世界交互中固有的模型不确定性;这是一个数据稀缺的过程。为了减少学习所需的数据量,将通过自动发现这些任务和每个任务的潜在运动基元来定制不同的模型。这个任务识别过程将与学习迭代操作,并利用改进的模型来发现新的任务。它还可以为改进的手部设计提供反馈。一旦基于学习和专注于任务的模型可用,它们将被用来学习和合成抓取和手中操作的控制器。为了学习控制器,这项工作将考虑一种基于模型的强化学习方法,该方法将与备选方案进行评估。对于控制器综合,现有的工具将与任务规划原语集成,并通过学习过程进行扩展,以确定不同控制器可以链接在一起的前提条件。该项目包括对PIS实验室设计的各种新型自适应手和机械臂进行广泛的评估。基于视觉的现代解决方案将用于跟踪抓取的对象,并为学习和闭环控制提供反馈。评估将衡量所开发的混合模型是否能够显著提高抓取的稳健性和灵巧操作的有效性。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hand–object configuration estimation using particle filters for dexterous in-hand manipulation
使用粒子滤波器进行手部物体配置估计,以实现灵巧的手部操作
Learning Modes of Within-Hand Manipulation
Towards Generalized Manipulation Learning Through Grasp Mechanics-Based Features and Self-Supervision
通过基于抓取力学的特征和自我监督实现广义操纵学习
  • DOI:
    10.1109/tro.2021.3057802
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Morgan, Andrew S.;Bircher, Walter G.;Dollar, Aaron M.
  • 通讯作者:
    Dollar, Aaron M.
Manipulation for self-Identification, and self-Identification for better manipulation
  • DOI:
    10.1126/scirobotics.abe1321
  • 发表时间:
    2021-05-26
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Hang, Kaiyu;Bircher, Walter G.;Dollar, Aaron M.
  • 通讯作者:
    Dollar, Aaron M.
Using a Variable-Friction Robot Hand to Determine Proprioceptive Features for Object Classification During Within-Hand-Manipulation
使用可变摩擦机器人手确定手内操作过程中物体分类的本体感觉特征
  • DOI:
    10.1109/toh.2019.2958669
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Spiers, Adam J.;Morgan, Andrew S.;Srinivasan, Krishnan;Calli, Berk;Dollar, Aaron M.
  • 通讯作者:
    Dollar, Aaron M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Dollar其他文献

Aaron Dollar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Dollar', 18)}}的其他基金

Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
  • 批准号:
    2132823
  • 财政年份:
    2022
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Towards Practical Encoderless Robotics Through Vision-Based Training and Adaptation
RI:中:协作研究:通过基于视觉的训练和适应实现实用的无编码机器人技术
  • 批准号:
    1900681
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
FW-HTF-RL: Collaborative Research: Shared Autonomy for the Dull, Dirty, and Dangerous: Exploring Division of Labor for Humans and Robots to Transform the Recycling Sorting Industry
FW-HTF-RL:协作研究:沉闷、肮脏和危险的共享自治:探索人类和机器人的分工以改变回收分类行业
  • 批准号:
    1928448
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
EFRI C3 SoRo: Muscle-like Cellular Architectures and Compliant, Distributed Sensing and Control for Soft Robots
EFRI C3 SoRo:软机器人的类肌肉细胞架构和兼容的分布式传感和控制
  • 批准号:
    1832795
  • 财政年份:
    2018
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: Rethinking Multi-Legged Robots: Passive Terrain Adaptability through Underactuated Mechanisms and Exactly-Constrained Kinematics
NRI:重新思考多足机器人:通过欠驱动机构和精确约束运动学实现被动地形适应性
  • 批准号:
    1637647
  • 财政年份:
    2016
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: Small: Dexterous Manipulation with Underactuated Hands: Strategies, Control Primitives, and Design for Open-Source Hardware
NRI:小:用欠驱动的手进行灵巧操纵:策略、控制原语和开源硬件设计
  • 批准号:
    1317976
  • 财政年份:
    2013
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
CAREER: Underactuacted Precision Robotic Grasping and Manipulation
职业:欠驱动精密机器人抓取和操纵
  • 批准号:
    0953856
  • 财政年份:
    2010
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Continuing Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
  • 批准号:
    2054343
  • 财政年份:
    2020
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Distributed co-Robots for Strawberry Harvesting
NRI:INT:COLLAB:用于草莓采摘的分布式协作机器人
  • 批准号:
    1924622
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Raining Drones: Mid-Air Release & Recovery of Atmospheric Sensing Systems
NRI:INT:协作:无人机下雨:空中发布
  • 批准号:
    1925052
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Leveraging Environmental Monitoring UAS in Rainforests
NRI:INT:协作:利用雨林中的环境监测无人机
  • 批准号:
    1925262
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Program Verification and Synthesis for Collaborative Robots
NRI:INT:COLLAB:协作机器人的程序验证和综合
  • 批准号:
    1925043
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
  • 批准号:
    1925371
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
  • 批准号:
    1925343
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Leveraging Environmental Monitoring UAS in Rainforests
NRI:INT:协作:利用雨林中的环境监测无人机
  • 批准号:
    1925368
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Mesh Of Robots on a Pneumatic Highway (MORPH): An Untethered, Human-Safe, Shape-Morphing Robotic Platform
NRI:INT:COLLAB:气动高速公路上的机器人网格 (MORPH):一个不受束缚、对人类安全、可变形的机器人平台
  • 批准号:
    1925373
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Distributed co-Robots for Strawberry Harvesting
NRI:INT:COLLAB:用于草莓采摘的分布式协作机器人
  • 批准号:
    1924662
  • 财政年份:
    2019
  • 资助金额:
    $ 63.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了