CAREER: Multiscale modeling of collective behavior of bacteria
职业:细菌集体行为的多尺度建模
基本信息
- 批准号:0954445
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0954445UnderhillThe objective of the proposed activity is to develop novel coarse-grained hydrodynamic simulation methods to model the collective swimming behavior of bacteria and other active particles and to investigate the collective behavior of bacteria in viscoelastic media and near surfaces. The research focuses specifically on bacterial systems because of their importance in infections, experimental data are becoming available, and the possibility of designing new engineered systems. If successful, the research contributions will have a broad range of applications, including chemical and biological engineering, materials science, and social science. If the concentration of bacteria becomes high enough, collective behavior emerges. The importance of chemical signaling (quorum sensing) is such systems is established. However, the emergence can occur even in absence of chemical signaling because of hydrodynamic interactions. Theory and simulation of such systems is the main subject of this project. Intellectual Merit Mesoscopic phenomena (such as transport phenomena) play an important role in the macroscopic outcome observed in many areas including biology. The research has two central goals: 1) build a coarse-graining framework that allows for tractable simulations which capture the key hydrodynamic features, and 2) use a novel simulation method to study for the first time the impact a non-Newtonian fluid has on the collective behavior. These goals will potentially provide fundamental insights into natural phenomena such as bacterial infections in mucus of the lungs and intestines and biofilm formation, but also provide the tools to design bacterial systems. Preliminary results show that a non-Newtonian fluid can be used to control and interrupt collective behavior. This work will potentially change the paradigm in engineering of bacterial communities by including hydrodynamics and mechanical communication on equal footing with (an integrated together with) genetic manipulation and chemical communication. Broader Impacts The framework built in this work and the fundamental advances on collective behavior will potentially impact many areas. This includes the following examples: if groups of organisms can undergo chemotaxis more efficiently than individuals, then active agents can work together as drug delivery agents to find and destroy tumors. New active materials can be designed with unique mechanical properties. Fluid mechanics can be used to optimize biofuel production by bacteria. Hydrodynamic interaction is seen as an example in which simple rules can give rise to complex emergent behavior. The research will help us understand which aspects of the emergent behavior are universal and which are particular to hydrodynamic interactions. Education and Outreach: Research and education both benefit by being strongly tied together by leveraging the curiosity that is generated by visualizing fluid mechanics and biology. Java-based applets will be developed to teach fundamental concepts and encourage underrepresented groups. The applets will allow a user to interactively explore state-of-the-art research concepts. The interactive nature gives the user a greater sense of excitement and drive to learn more. Workshops will also be held at Rensselaer to bring together researchers studying complex fluids from a wide range of disciplines.
0954445 Underhill拟议活动的目的是开发新的粗粒度流体动力学模拟方法,以模拟细菌和其他活性颗粒的集体游泳行为,并研究粘弹性介质和近表面细菌的集体行为。该研究特别关注细菌系统,因为它们在感染中的重要性,实验数据正在变得可用,以及设计新工程系统的可能性。如果成功,研究成果将有广泛的应用,包括化学和生物工程,材料科学和社会科学。如果细菌的浓度足够高,就会出现集体行为。化学信号(群体感应)的重要性是建立这样的系统。然而,由于流体动力学相互作用,即使在没有化学信号的情况下也可以出现。此类系统的理论和仿真是该项目的主要主题。介观现象(如输运现象)在包括生物学在内的许多领域所观察到的宏观结果中起着重要作用。该研究有两个中心目标:1)建立一个粗粒度的框架,允许捕获关键流体动力学特征的易处理的模拟,2)使用一种新的模拟方法首次研究非牛顿流体对集体行为的影响。这些目标将可能为自然现象提供基本见解,例如肺和肠粘液中的细菌感染和生物膜形成,但也提供了设计细菌系统的工具。初步结果表明,非牛顿流体可以用来控制和中断集体行为。这项工作将潜在地改变细菌群落工程的范式,包括流体动力学和机械通信与遗传操纵和化学通信(集成在一起)。更广泛的影响在这项工作中建立的框架和集体行为的基本进展将可能影响许多领域。这包括以下例子:如果生物体群体可以比个体更有效地进行趋化,那么活性剂可以作为药物递送剂一起工作以发现和破坏肿瘤。可以设计具有独特机械性能的新活性材料。流体力学可用于优化细菌的生物燃料生产。流体动力学的相互作用被视为一个例子,其中简单的规则可以引起复杂的紧急行为。这项研究将有助于我们了解涌现行为的哪些方面是普遍的,哪些方面是流体动力学相互作用所特有的。教育和推广:研究和教育都受益于通过利用可视化流体力学和生物学产生的好奇心而紧密联系在一起。将开发基于Java的小程序来教授基本概念,并鼓励代表性不足的群体。小程序将允许用户交互式地探索最先进的研究概念。交互式的本质给了用户更大的兴奋感和学习更多的动力。研讨会也将在伦斯勒举行,汇集研究复杂流体的研究人员从广泛的学科。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Underhill其他文献
Patrick Underhill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Underhill', 18)}}的其他基金
New theoretical and simulation approach for understanding packing structures of soft self-adjusting objects
用于理解软自调节物体堆积结构的新理论和模拟方法
- 批准号:
2230946 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Nanoparticle analysis of antibody colloidal interactions and their influence on viscoelastic properties of concentrated antibody solutions
合作研究:GOALI:抗体胶体相互作用的纳米颗粒分析及其对浓抗体溶液粘弹性的影响
- 批准号:
1803497 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Trapping and separating objects in free solution by exploiting conformation-dependent electrophoretic mobility
利用构象依赖性电泳迁移率捕获和分离自由溶液中的物体
- 批准号:
1826788 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Propulsion of enzyme-coated Janus particles through complex environments
EAGER:通过复杂环境推进涂有酶的 Janus 颗粒
- 批准号:
1544617 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Multiscale Modeling of Thrombus Formation and its Response to External Loads
职业:血栓形成的多尺度建模及其对外部负载的响应
- 批准号:
2340696 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
- 批准号:
2339054 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Data-driven Multiscale Modeling of Complex Traffic Systems Utilizing Networked Driving Simulators
职业:利用网络驾驶模拟器对复杂交通系统进行数据驱动的多尺度建模
- 批准号:
2238359 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Revealing the interaction mechanisms of PICK1 using multiscale modeling
职业:使用多尺度建模揭示 PICK1 的相互作用机制
- 批准号:
2237369 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Cryo-electron tomography derived multiscale integrative modeling of subcellular organization
职业:冷冻电子断层扫描衍生的亚细胞组织多尺度综合模型
- 批准号:
2238093 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Connecting biology and mechanics through a multiscale modeling of pubertal mammary gland development
职业:通过青春期乳腺发育的多尺度建模将生物学和力学联系起来
- 批准号:
2240155 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Unified Multiscale Modeling Approach for Processes in the Atmospheric Boundary Layer
职业:大气边界层过程的统一多尺度建模方法
- 批准号:
2236504 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A scalable multiscale modeling framework to explore soot formation in reacting flows
职业:一个可扩展的多尺度建模框架,用于探索反应流中烟灰的形成
- 批准号:
2144290 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant