EAGER: Propulsion of enzyme-coated Janus particles through complex environments
EAGER:通过复杂环境推进涂有酶的 Janus 颗粒
基本信息
- 批准号:1544617
- 负责人:
- 金额:$ 15.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET - 1544617PI: Underhill, PatrickThe goals of this project are to synthesize a micron-sized particle that is capable of self-propulsion and to characterize the motion of the particle in complex fluids. A portion of the surface of the spherical particle is coated with an enzyme that reacts with peroxide in the surrounding fluid. The reaction at the particle surface creates an osmotic pressure difference across the particle, which causes it to move. The enzymatic reaction can propel the particle at very low peroxide concentrations in the surrounding media, which makes the self-propelled particle a candidate for use in biological systems that are sensitive to peroxide concentration. The velocity of the particle will be measured for a series of viscous fluids, including complex fluids that are models of biological media. Self-propelled particles are promising vehicles to enhance transport and deliver molecular cargoes in complex environments ranging from multiphase fluid systems to biological tissues. The researchers will involve undergraduate and high school students in the project and use results of the research in outreach programs at their institution.The project comprises experimental and theoretical studies to quantify and elucidate mechanisms for the self-driven motion of colloidal particles through non-Newtonian environments. The experiments will utilize a class of Janus particles that propel themselves using an enzyme coated on part of their surface. Motion results from the reaction of a peroxide fuel in solution on the particle surface producing a non-uniform distribution of solutes around the particle, which leads to propulsion by a mechanism called self-diffusiophoresis. The project will test predictions of current theories of self-diffusiophoresis in Newtonian fluids, especially the dependence of particle velocity on fluid viscosity, and then examine motion in more complex, non-Newtonian fluids that are homogeneous on the size scale of the propelling particle. This will be done using polymer solutions in which the polymer radius of gyration is significantly smaller than the motor. Results will form a foundation for self-propelled particle design and use in complex and multiphase fluids.
这个项目的目标是合成一种微米大小的、能够自我推进的粒子,并表征这种粒子在复杂流体中的运动。球形颗粒表面的一部分被一种酶包裹,这种酶与周围液体中的过氧化物发生反应。粒子表面的反应产生了渗透压差,使粒子移动。酶促反应可以在周围介质中以非常低的过氧化物浓度推动颗粒,这使得自推进颗粒成为对过氧化物浓度敏感的生物系统的候选者。将测量一系列粘性流体的粒子速度,包括作为生物介质模型的复杂流体。在多相流体系统和生物组织等复杂环境中,自行式粒子是一种很有前途的运输工具,可以增强分子货物的运输和输送。研究人员将让本科生和高中生参与该项目,并将研究结果用于他们所在机构的外展项目。该项目包括实验和理论研究,以量化和阐明非牛顿环境中胶体粒子自驱动运动的机制。实验将利用一类Janus粒子,这些粒子通过在其部分表面涂上一层酶来推动自己。运动是由过氧化氢燃料在颗粒表面的溶液中的反应引起的,在颗粒周围产生不均匀的溶质分布,从而通过一种称为自扩散泳动的机制产生推进力。该项目将测试当前牛顿流体中自扩散电泳理论的预测,特别是粒子速度对流体粘度的依赖,然后研究更复杂的非牛顿流体中的运动,这些流体在推进粒子的尺寸尺度上是均匀的。这将使用聚合物溶液来完成,其中聚合物的旋转半径明显小于电机。研究结果将为复杂多相流体中自推进粒子的设计和应用奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Underhill其他文献
Patrick Underhill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Underhill', 18)}}的其他基金
New theoretical and simulation approach for understanding packing structures of soft self-adjusting objects
用于理解软自调节物体堆积结构的新理论和模拟方法
- 批准号:
2230946 - 财政年份:2023
- 资助金额:
$ 15.16万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Nanoparticle analysis of antibody colloidal interactions and their influence on viscoelastic properties of concentrated antibody solutions
合作研究:GOALI:抗体胶体相互作用的纳米颗粒分析及其对浓抗体溶液粘弹性的影响
- 批准号:
1803497 - 财政年份:2018
- 资助金额:
$ 15.16万 - 项目类别:
Standard Grant
Trapping and separating objects in free solution by exploiting conformation-dependent electrophoretic mobility
利用构象依赖性电泳迁移率捕获和分离自由溶液中的物体
- 批准号:
1826788 - 财政年份:2018
- 资助金额:
$ 15.16万 - 项目类别:
Standard Grant
CAREER: Multiscale modeling of collective behavior of bacteria
职业:细菌集体行为的多尺度建模
- 批准号:
0954445 - 财政年份:2010
- 资助金额:
$ 15.16万 - 项目类别:
Standard Grant
相似海外基金
AirWing Maximised Thrust Wind Propulsion Demonstration
AirWing 最大推力风力推进演示
- 批准号:
10097743 - 财政年份:2024
- 资助金额:
$ 15.16万 - 项目类别:
Collaborative R&D
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
- 批准号:
2347477 - 财政年份:2024
- 资助金额:
$ 15.16万 - 项目类别:
Standard Grant
Heat Transfer for Hydrogen-based Propulsion
氢基推进的传热
- 批准号:
2902853 - 财政年份:2024
- 资助金额:
$ 15.16万 - 项目类别:
Studentship
ERI: System Tautochronic Pendulum Vibration Absorbers for Next-Generation Propulsion Systems and Other Machinery
ERI:用于下一代推进系统和其他机械的系统等时摆减震器
- 批准号:
2347632 - 财政年份:2024
- 资助金额:
$ 15.16万 - 项目类别:
Standard Grant
Supercharging Wind Propulsion: Advancing Digital tools in maritime to deliver real world performance in a next generation Wind Propulsion Design
增压风力推进:推进海事领域的数字工具,在下一代风力推进设计中提供真实的性能
- 批准号:
10093454 - 财政年份:2024
- 资助金额:
$ 15.16万 - 项目类别:
Collaborative R&D
Condition Monitoring of Aircraft Propulsion for Automated Diagnostics
用于自动诊断的飞机推进状态监测
- 批准号:
LP220200934 - 财政年份:2024
- 资助金额:
$ 15.16万 - 项目类别:
Linkage Projects
Affordable novel wind tunnel for zero-emission aircraft propulsion testing
用于零排放飞机推进测试的经济实惠的新型风洞
- 批准号:
10078383 - 财政年份:2024
- 资助金额:
$ 15.16万 - 项目类别:
BEIS-Funded Programmes
Project Osprey: Advanced Electric Foiling Propulsion Systems for Sustainable Marine Transport
鱼鹰项目:用于可持续海洋运输的先进电动水翼推进系统
- 批准号:
10082505 - 财政年份:2024
- 资助金额:
$ 15.16万 - 项目类别:
Collaborative R&D
Triple hybrid fuel-cell-based propulsion for long-range eVTOL operations
用于远程 eVTOL 操作的基于三重混合燃料电池的推进系统
- 批准号:
IM230100644 - 财政年份:2023
- 资助金额:
$ 15.16万 - 项目类别:
Mid-Career Industry Fellowships














{{item.name}}会员




