CAREER: Engineering Functional Muscle-Tendon Structures using Scaffold-Free Cell-Based Directed Assembly and Theoretical Modeling

职业:使用无支架、基于细胞的定向组装和理论建模来工程功能性肌肉肌腱结构

基本信息

  • 批准号:
    0954990
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

0954990CorrThis integrated research and education CAREER proposal is focused to understand the role of fiber network architecture on overall tissue function, and thus establish the structure-function relationship. In the PI's scaffold-free approach, the natural ability of cells to grow and create their own extracellular matrix is harnessed, using geometric constraint, to form functional single fibers. This bottom-up approach will be utilized to create and tune fibers that will serve as building blocks for muscle-tendon structures, in which the architecture can be specified to fiber-level precision. The mechanical characterization of these muscle-tendon structures, when coupled with fiber-based theoretical modeling, will provide insight required to establish the structure-function relationship.The key novelties to this approach are: (1) scaffold-free engineering and mechanical evaluation of single fibers formed by directed cell growth, and (2) building functional muscle-tendon structures to precise fiber-level architecture. This represents a fundamental shift in tissue engineering approach; one necessary to create functional muscle-tendon units in which both muscle and tendon fiber architecture dictate the physiological and biomechanical function of the structure. This research program will utilize a scaffold-free approach to engineer muscle and tendon fibers by directing the growth of myoblasts and fibroblasts using geometric constraints to: (1) develop a fundamental understanding of the influence of environmental stimuli on cellular growth and fiber formation, in both muscle and tendon. (2) determine set(s) of bioreactor parameters for optimal muscle and tendon fiber performance(3) characterize the influence of fiber and crimp geometry on crimped engineered tendon fibers viscoelastic low-load and failure properties, using theoretical modeling and experimentation. (4) create functional muscle-tendon structures with fiber-level architectural fidelity to achieve the desired mechanical performance, as guided by theoretical modeling simulations.(5) establish the structure-function relationship for engineered muscle-tendon structures; including the contributions of each tissue, and compatibility at the muscle-tendon interface.The research will be complemented by integrated educational projects at the graduate, undergraduate and K-12 academic levels, both within Rensselaer Polytechnic Institute and as educational outreach. The latest research findings and methods will be incorporated into 3 graduate/undergraduate hybrid courses currently taught or co-taught by the PI, and a related 5-week lab experiment will be developed for the Cell & Tissue Engineering track of the Biomedical Engineering Laboratory course. Tissue engineering knowledge gained will be integrated into the PI's ongoing undergraduate (BIR Workshop) and K-12 (Design Your Future Day) outreach seminars. Furthermore, the PI will introduce a week-long biomaterials module into the summer American Society of Materials "Materials Day Camp", using an interactive series of hands-on experiments to establish the structure-function relationship of collagen networks present in soft tissues.
0954990 Corr这一综合研究和教育的职业生涯建议的重点是了解纤维网络结构对整体组织功能的作用,从而建立结构-功能关系。 在PI的无支架方法中,利用细胞生长和产生自身细胞外基质的天然能力,使用几何约束,形成功能性单纤维。 这种自下而上的方法将用于创建和调整纤维,这些纤维将作为肌肉肌腱结构的构建块,其中可以将架构指定为纤维级精度。 这些肌肉-肌腱结构的力学特性,结合基于纤维的理论建模,将提供建立结构-功能关系所需的洞察力。这种方法的关键创新点是:(1)定向细胞生长形成的单纤维的无支架工程和力学评估,以及(2)构建功能性肌肉-肌腱结构以精确的纤维水平架构。 这代表了组织工程方法的根本转变;一个必要的创造功能性肌肉肌腱单位,其中肌肉和肌腱纤维结构决定了结构的生理和生物力学功能。该研究计划将利用无支架方法,通过使用几何约束指导成肌细胞和成纤维细胞的生长来工程化肌肉和肌腱纤维,以:(1)对环境刺激对肌肉和肌腱中细胞生长和纤维形成的影响进行基本了解。(2)确定用于最佳肌肉和肌腱纤维性能的生物反应器参数组(3)使用理论建模和实验表征纤维和卷曲几何形状对卷曲工程化肌腱纤维粘弹性低负荷和失效性质的影响。(4)在理论建模仿真的指导下,创建具有纤维级架构保真度的功能性肌肉肌腱结构,以实现所需的机械性能。(5)建立工程化肌肉肌腱结构的结构-功能关系;包括每个组织的贡献,以及肌肉肌腱界面的兼容性。该研究将通过研究生,本科生和K-12学术水平的综合教育项目进行补充,无论是在伦斯勒理工学院还是作为教育推广。 最新的研究成果和方法将被纳入目前由PI教授或共同教授的3门研究生/本科生混合课程,并将为生物医学工程实验室课程的细胞组织工程轨道开发一个相关的5周实验室实验。 获得的组织工程知识将被整合到PI正在进行的本科(BIR研讨会)和K-12(设计你的未来日)外展研讨会。 此外,PI将在美国材料学会夏季“材料日营”中引入为期一周的生物材料模块,使用一系列互动的动手实验来建立软组织中胶原蛋白网络的结构-功能关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Corr其他文献

The Mechanical Properties of Drosophila Jump Muscle Expressing Wild-type and an Embryonic Myosin Isoform
  • DOI:
    10.1016/j.bpj.2008.12.3269
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Catherine J. Eldred;Dimitre Simeonov;Ryan Koppes;Chaoxing Yang;David Corr;Douglas Swank
  • 通讯作者:
    Douglas Swank

David Corr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Corr', 18)}}的其他基金

Collaborative Research: Innovation in Sustainable Mass Timber Building Systems
合作研究:可持续大型木结构建筑系统的创新
  • 批准号:
    1762757
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Engineering a 3D construct with perfusable and functional capillary networks using scaffold-free method
使用无支架方法设计具有可灌注和功能性毛细血管网络的 3D 结构
  • 批准号:
    24K21088
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Engineering Functional Antimicrobial Polypeptide Surfaces
工程功能性抗菌多肽表面
  • 批准号:
    DP240102343
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Projects
Engineering Hybrid Materials with Functional Bioactivity in the GI Tract
在胃肠道中具有功能性生物活性的工程混合材料
  • 批准号:
    LP230100345
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Linkage Projects
Co-engineering Hebbian and Homeostatic Plasticity Mechanisms to Induce Targeted Functional Neural Connectivity Changes
共同设计赫布和稳态可塑性机制以诱导有针对性的功能性神经连接变化
  • 批准号:
    10754414
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Breaking FROntiers for advanced engineering of bespoke, functional Biopolymer COmposite materials (FROBCO)
突破 FROntiers,实现定制功能性生物聚合物复合材料 (FROBCO) 的先进工程
  • 批准号:
    EP/V002236/3
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship
Engineering RNA editing tools for the generation of functional tRNA-derived small RNAs in the kidney
用于在肾脏中生成功能性 tRNA 衍生小 RNA 的工程 RNA 编辑工具
  • 批准号:
    10751516
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Reverse Engineering the Extracellular Neighborhood to Support the Functional Tissue Unit: A Use Case to Restore Ovarian Function
对细胞外邻域进行逆向工程以支持功能组织单位:恢复卵巢功能的用例
  • 批准号:
    10530993
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Engineering scalable collecting duct networks for functional kidney tissue
为功能性肾组织设计可扩展的集合管网络
  • 批准号:
    10674480
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Computational Engineering of Bio-inspired Hierarchical Surfaces and Multi-functional Materials based on the Plywood Architecture
基于胶合板结构的仿生分层表面和多功能材料的计算工程
  • 批准号:
    RGPIN-2019-03910
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了