Engineering RNA editing tools for the generation of functional tRNA-derived small RNAs in the kidney

用于在肾脏中生成功能性 tRNA 衍生小 RNA 的工程 RNA 编辑工具

基本信息

项目摘要

1 tRNAs have been recently demonstrated to be processed by ribonucleases into smaller regulatory fragments 2 named tRNA-derived small RNAs (tDRs) with their own distinct function including mRNA stability and silencing, 3 stress granule formation and epigenetic regulation. The function of these tDRs are dependent on their 4 sequence conservation and base modification that in turn determine their structure and protein-binding ability. 5 We have previously detailed the dynamic regulation of tDRs in response to cellular stress and have in the 6 process identified Asp-GTC-3’tDR that plays a critical role in stress-dependent induction of autophagy, is highly 7 expressed in the kidney and appears to be reno-protective in vitro. In several murine in vivo models, cellular 8 levels of Asp-GTC-3’tDR initially increases in the acute phase of renal injury, and subsequently decreases in 9 chronic kidney disease models. Notably in vivo silencing of Asp-GTC-3’tDR in the acute phase of renal injury 10 accelerates cell death and disease progression suggesting a compensatory response. However, tools to 11 manipulate the expression of this and other tDRs in vivo that preserve their cellular modifications presents a 12 significant hurdle in the field. Our preliminary data suggest that the RNA-targeting CRISPR/Cas13, guided by 13 gRNAs, can induce programmable cleavage(s) on tRNAs and generate functional tDRs without disturbing the 14 parent tRNA pool. Notably, we built a functional and smaller Cas13/ANG chimeric protein by replacing two 15 HEPN domains of pspCas13b with Angiogenin (ANG), a small RNase responsible for tDR biogenesis that 16 permits packaging into viral gene delivery vectors. The long-term objective of this proposal is to is to develop a 17 programmable Cas13/ANG platform packaged in AAVs for delivery to kidneys for the biogenesis of 18 endogenous functional tDRs. To achieve our objectives, we plan to: 1) Test the hypothesis that the engineered 19 CAS13/ANG platform, customized with suitable gRNAs, generates endogenous functional tDRs. As a proof-of- 20 concept, we focus on three tDRs with clear readouts: stress granule-inducing Ala-AGC-5’tDRs and Cys-GCA- 21 5’tDRs, and autophagy-inducing Asp-GTC-3’tDRs. These will be tested in HEK cells for their ability to induce 22 robust tDR generation without disturbing the parent tRNA pools; assays checking for stress granule formation 23 and autophagy flux will be used to evaluate the functionality of Cas13/ANG-generated tDRs; and 2) Use AAV- 24 delivered Cas13/ANG machinery to generate functional Asp-GTC-3’tDR in kidneys and determine if this 25 attenuates CKD progression in our mouse CKD model. The functional effects of induction of Asp-GTC-3’tDR 26 will be assessed by northern blotting, histology, immunostaining, western blotting, and RNA-seq to determine 27 effects on autophagy and the progression of CKD. We expect this platform which we aim to make widely 28 available to the scientific community could be used in many different systems to both study the function of 29 tDRs in vivo, and also provide a possible therapeutic avenue for tDR-based therapeutics.
1个tRNAs最近被证明被核糖核酸酶加工成更小的调节片段 2命名为tRNA衍生的小RNAs(TDR),具有其独特的功能,包括mRNA稳定和沉默, 3应激颗粒形成与表观遗传调控。这些TDR功能取决于它们的 4序列保守和碱基修饰,进而决定其结构和蛋白质结合能力。 5我们之前已经详细介绍了TDRS在细胞应激反应中的动态调节,并在 6过程确定的Asp-GTC-3‘TDR在应激依赖的自噬诱导中起关键作用,是高度 7在肾脏中表达,在体外似乎具有肾脏保护作用。在几个小鼠体内模型中,细胞 8肾损伤急性期Asp-GTC-3‘TdR水平最初升高,随后下降。 慢性肾脏病模型9只。肾损伤急性期Asp-GTC-3‘TdR的体内沉默 10加速细胞死亡和疾病进展,提示一种代偿反应。然而,工具可用于 11在体内操纵该TDR和其他TDR的表达,保持其细胞修改呈现一种 12该领域的重大障碍。我们的初步数据表明,以RNA为靶点的CRISPR/Cas13在 13个gRNA,可诱导tRNA上的程序性切割(S),并在不干扰TDR的情况下产生功能性TDR 14个亲本tRNA池。值得注意的是,我们通过替换两个 PspCas13b的15个HEPN结构域与血管生成素(Ang)结合,Ang是一种负责TDR生物发生的小核糖核酸酶 16允许包装成病毒基因递送载体。这项提议的长期目标是开发一种 17个可编程的Cas13/Ang平台,包装在AAVs中,用于运送到肾脏进行生物发生 18个内源性功能性TDRs。为了实现我们的目标,我们计划:1)测试工程设计的 19个CAS13/Ang平台,定制合适的gRNAs,产生内源性功能TDR。作为证明- 20概念,我们重点研究了三种具有清晰读数的TDRs:应激颗粒诱导的ALA-AGC-5‘TDRS和Cys-GCA-TDRS- 21 5‘TDRS和自噬诱导的Asp-GTC-3’TDRS。这些细胞将在HEK细胞中进行测试,以了解它们诱导 22在不干扰亲本tRNA池的情况下产生稳健的TDR;检查应激颗粒形成的分析 23和自噬通量将用于评估Cas13/Ang产生的TDRs的功能;和2)使用AAV- 24台提供了Cas13/Ang的机器,以在肾脏中产生功能性的Asp-GTC-3‘TDR并确定这是否 在我们的小鼠CKD模型中,25可以减缓CKD的进展。天冬氨酸-GTC-3‘-TdR诱导的功能效应 26将通过Northern印迹、组织学、免疫染色、Western blotting和rna-seq来确定。 27对自噬和慢性肾脏病进展的影响。我们期待着我们的目标是广泛地制作这个平台 科学界可以在许多不同的系统中使用28种方法来研究 29 TDR在体内的表达,也为基于TDR的治疗提供了一条可能的治疗途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH VINCENT BONVENTRE其他文献

JOSEPH VINCENT BONVENTRE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH VINCENT BONVENTRE', 18)}}的其他基金

Kidney Microphysiological Analysis Platforms (MAP) to Optimize Function and Model Disease
用于优化功能和疾病模型的肾脏微生理分析平台 (MAP)
  • 批准号:
    10018126
  • 财政年份:
    2017
  • 资助金额:
    $ 33.18万
  • 项目类别:
Kidney Microphysiological Analysis Platforms (MAP) to Optimize Function and Model Disease
用于优化功能和疾病模型的肾脏微生理分析平台 (MAP)
  • 批准号:
    10226203
  • 财政年份:
    2017
  • 资助金额:
    $ 33.18万
  • 项目类别:
Kidney Microphysiological Analysis Platforms (MAP) to Explore SARS-CoV-2 Receptors and Inhibitors. A supplement to Parent Grant: Kidney Microphysiological Analysis Platforms (MAP) to Optimize Function
用于探索 SARS-CoV-2 受体和抑制剂的肾脏微生理分析平台 (MAP)。
  • 批准号:
    10179916
  • 财政年份:
    2017
  • 资助金额:
    $ 33.18万
  • 项目类别:
Organ Design and Engineering Training Program (ODET Program)
器官设计与工程培训项目(ODET项目)
  • 批准号:
    9096101
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:
Organ Design and Engineering Training Program (ODET Program)
器官设计与工程培训项目(ODET项目)
  • 批准号:
    10681212
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:
Harvard Summer Research Program in Kidney Medicine
哈佛大学肾脏医学夏季研究项目
  • 批准号:
    8670647
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:
Organ Design and Engineering Training Program (ODET Program)
器官设计与工程培训项目(ODET项目)
  • 批准号:
    10246782
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:
Organ Design and Engineering Training Program (ODET Program)
器官设计与工程培训项目(ODET项目)
  • 批准号:
    10441516
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:
Harvard Summer Research Program in Kidney Medicine
哈佛大学肾脏医学夏季研究项目
  • 批准号:
    9534224
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:
Harvard Summer Research Program in Kidney Medicine
哈佛大学肾脏医学夏季研究项目
  • 批准号:
    10380632
  • 财政年份:
    2014
  • 资助金额:
    $ 33.18万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 33.18万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了