CAREER: Electromicrobiological Studies Using Microbial Electrochemical Systems Capable of Sustainable Energy Production and Waste Treatment
职业:利用能够可持续能源生产和废物处理的微生物电化学系统进行电微生物学研究
基本信息
- 批准号:0955124
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0955124LiuThe conversion of biomass, especially organic wastes, to energy is considered an essential part of a sustainable global energy portfolio. Novel microbial electrochemical systems, such as microbial fuel cell for electricity generation and microbial electrolysis cell for hydrogen production, have emerged as potential clean technologies for renewable energy production and waste treatment. The key feature and common process shared by these systems is the microbe-catalyzed electron transfer from organic matter to anodes. Enhancing current output from the anode is critical for the successful application of all these processes, which requires a fundamental understanding of the biofilm that develops on the anode. The applicants aim, through this project, is to advance the emerging area of electromicrobiological engineering by systematically investigating the high current-producing biofilm of a microbial electrochemical system capable of sustainable energy production and waste treatment. This project will build on the recent studies of a mixed bacterial culture in the applicant?s lab that exhibits many of the desirable features for electricity and hydrogen production. The microbial community is simple enough, however, to remain manageable for analysis of complex interactions between the constituent species, thereby providing an ideal case study for investigation of a current-producing anodic community. The main activities of the proposed research program include: (1) isolation and identification of the dominant bacterial strains in the microbial consortium; (2) characterization of the isolated strains in terms of their morphological, physiological, and electrochemical properties; (3) elucidation of the electron transfer mechanisms of the isolated exoelectrogens; and (4) investigation of the interactive relationships between different bacterial species in the anodic consortium. This is the first systematic investigation of its kind, wherein a mixed culture with high current-generating capability is studied comprehensively to determine the identities of the predominant bacteria, the mechanisms by which the bacteria transfer electrons to the electrode, and the ways in which the bacteria interact in the community. The proposed research, when successfully accomplished, not only will address the unanswered question of why the current generated by mixed cultures is often much greater and more stable than that generated by most pure cultures, but also will result in the discovery of highly efficient new model species for electromicrobiological studies. Furthermore, the conclusions from this research will enrich our understanding of two critical and poorly-understood aspects of microbial electrochemical systems: the mechanisms of extracellular electron transfer, including biogenic mediators, outer membrane cytochromes, and bacterial nanowires and the metabolic interactions within anodic consortia, involving quorum sensing chemicals, mediators, and exchange of electron donors between species. Understanding the fundamental metabolic and electrochemical mechanisms within the anode biofilm not only will enable the design of stable and efficient systems for energy generation, but also will accelerate the development of microbial electrochemical systems for diverse other applications such as bioremediation and biosensing. The applicant has a solid track record of performance and publication in this research field, and has the resources for executing the proposed program successfully. The broader impacts of this project are educational, environmental, and economic, and range from local to global in scale. The microbial electrochemical systems that relate to both energy and environmental sustainability can serve as a powerful platform for motivating students to study and understand complex concepts of microbial ecology, electrochemistry, and material science and engineering and resolve energy and environmental issues in the future. This project will significantly improve the scientific reasoning skills of graduate, undergraduate, and K-12 students through the development of hands-on microbial fuel cell teaching modules. This project also presents a unique opportunity for blending the educational experience of the local students involved in the project with cutting edge scientific research in an area of national and global concern. Efforts will be made to recruit and mentor underrepresented minority students through OSUs SESEY program. The concomitant treatment of waste during the energy generation process performs a double-duty of sustainability, providing energy from a renewable source while benefiting human health worldwide. Finally, generating energy from agricultural and industrial waste biomass offers a novel source of economic benefit to farmers and industries, especially those in remote areas and in developing countries. The results of this work will be disseminated through publications in refereed journals and conference presentations and also will be made available on the applicants webpage.
0955124Liu生物质(特别是有机废物)转化为能源被认为是可持续全球能源组合的重要组成部分。新型微生物电化学系统,例如用于发电的微生物燃料电池和用于制氢的微生物电解电池,已成为可再生能源生产和废物处理的潜在清洁技术。这些系统共有的关键特征和共同过程是微生物催化的电子从有机物到阳极的转移。增强阳极的电流输出对于所有这些过程的成功应用至关重要,这需要对阳极上形成的生物膜有基本的了解。通过该项目,申请人的目标是通过系统地研究能够可持续能源生产和废物处理的微生物电化学系统的高电流产生生物膜来推进电微生物工程的新兴领域。该项目将建立在申请人实验室最近对混合细菌培养物的研究基础上,该研究展示了电力和氢气生产的许多理想特征。然而,微生物群落足够简单,足以对组成物种之间复杂的相互作用进行分析,从而为研究当前产生的阳极群落提供理想的案例研究。拟议研究计划的主要活动包括:(1)微生物群落中优势菌株的分离和鉴定; (2) 分离菌株的形态、生理和电化学特性的表征; (3) 阐明孤立的外生电的电子转移机制; (4)研究阳极群落中不同细菌种类之间的相互作用关系。这是此类研究中的首次系统研究,其中对具有高电流产生能力的混合培养物进行了全面研究,以确定优势细菌的身份、细菌将电子转移到电极的机制以及细菌在群落中相互作用的方式。拟议的研究一旦成功完成,不仅将解决为什么混合培养物产生的电流通常比大多数纯培养物产生的电流更大、更稳定这一尚未解答的问题,而且还将发现用于电微生物学研究的高效新模型物种。此外,这项研究的结论将丰富我们对微生物电化学系统两个关键且知之甚少的方面的理解:细胞外电子转移机制,包括生物介质、外膜细胞色素和细菌纳米线,以及阳极群内的代谢相互作用,涉及群体感应化学物质、介质和电子供体之间的交换 物种。了解阳极生物膜内的基本代谢和电化学机制不仅能够设计稳定高效的能源产生系统,而且还将加速微生物电化学系统用于生物修复和生物传感等各种其他应用的开发。申请人在该研究领域拥有良好的业绩和发表记录,并拥有成功执行拟议项目的资源。该项目更广泛的影响涉及教育、环境和经济,影响范围从地方到全球。与能源和环境可持续性相关的微生物电化学系统可以作为一个强大的平台,激励学生学习和理解微生物生态学、电化学、材料科学与工程的复杂概念,并解决未来的能源和环境问题。该项目将通过开发微生物燃料电池实践教学模块,显着提高研究生、本科生和 K-12 学生的科学推理能力。该项目还提供了一个独特的机会,将参与该项目的当地学生的教育经验与国家和全球关注领域的前沿科学研究相结合。我们将努力通过 OSU 的 SSEY 计划招募和指导代表性不足的少数族裔学生。能源生产过程中的废物处理具有双重可持续性,即提供可再生能源,同时造福全世界人类健康。最后,利用农业和工业废弃生物质发电为农民和工业,特别是偏远地区和发展中国家的农民和工业提供了新的经济利益来源。这项工作的结果将通过参考期刊上的出版物和会议演示文稿进行传播,也将在申请人的网页上提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Liu其他文献
Facile and Scalable Synthesis of Si@void@C Embedded in Interconnected Three-Dimensional Porous Carbon Architecture for High Performance Lithium Ion Batteries
嵌入互连三维多孔碳结构的 Si@void@C 的简便且可扩展的合成,用于高性能锂离子电池
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.7
- 作者:
Jingyun Ma;Hua Tan;Hong Liu;Yimin Chao - 通讯作者:
Yimin Chao
Effect of heparin-superoxide dismutase on γ-radiation induced DNA damage in vitro and in vivo.
肝素超氧化物歧化酶对体外和体内 γ 辐射诱导的 DNA 损伤的影响。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3.1
- 作者:
Jinfeng Liu;Xuan Wang;Haining Tan;Hong Liu;Yonggang Wang;Renqin Chen;Jichao Cao;Fengshan Wang - 通讯作者:
Fengshan Wang
Recyclable Ligands for the Non-Enzymatic Dynamic Kinetic Resolution of Challenging a-Amino Acids.
用于非酶动态动力学拆分具有挑战性的 α-氨基酸的可回收配体。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hiroki Moriwaki;Aki Kawashima;Vadim A. Soloshonok;Hong Liu - 通讯作者:
Hong Liu
Transcatheter arterial chemoembolisation combined with lenvatinib and cabozantinib in the treatment of advanced hepatocellular carcinoma.
经导管动脉化疗栓塞联合乐伐替尼和卡博替尼治疗晚期肝细胞癌。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
Hong Liu;Xue;Jian;Qin Yang;Dai;Yong;Feng;Bo Li;Qi;Jun Zhang - 通讯作者:
Jun Zhang
Influences of Solid to Liquid Ratio on Bio-Hydrogen Production from Smashed Banana by Photosynthetic Bacteria HAU-M1
固液比对光合细菌HAU-M1粉碎香蕉产氢的影响
- DOI:
10.1166/jbmb.2018.1764 - 发表时间:
2018-06 - 期刊:
- 影响因子:0.5
- 作者:
Yameng Li;Hong Liu;Quanguo Zhang;Tian Zhang;Shengnan Zhu;Zhiping Zhang - 通讯作者:
Zhiping Zhang
Hong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Liu', 18)}}的其他基金
IUCRC Planning Grant Embry-Riddle Aeronautical University: Center for Aviation Big Data Analytics [ABDA]
IUCRC 规划拨款 安柏里德航空大学:航空大数据分析中心 [ABDA]
- 批准号:
2231629 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Distributed Learning for Undergraduate Programs in Data Science at Diverse Universities
不同大学数据科学本科课程的分布式学习
- 批准号:
2142514 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: IGE: Graduate Education in Cyber-Physical Systems Engineering
合作研究:IGE:网络物理系统工程研究生教育
- 批准号:
2105718 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: Machine Learning Approach for Microbial Process Control and Management
I-Corps:微生物过程控制和管理的机器学习方法
- 批准号:
1824119 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AIR Option 1: Technology Translation Sustainable Wastewater Treatment System for Food and Beverage Industry
AIR方案1:食品饮料行业可持续废水处理系统技术转化
- 批准号:
1312301 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Coalition for Undergraduate Computational Science & Engineering: Proof of Concept
本科生计算科学联盟
- 批准号:
1244967 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: Microbial Fuel Cells for Decentralized Wastewater Treatment and Energy Generation
I-Corps:用于分散式废水处理和能源生产的微生物燃料电池
- 批准号:
1265144 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
High Efficiency Bio-electrolytic Hydrogen Production from Biomass Using Nanostructure-Decorated Electrodes
使用纳米结构装饰电极从生物质中高效生物电解制氢
- 批准号:
0828544 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Internet QoS Management
互联网QoS管理的发展
- 批准号:
9612852 - 财政年份:1996
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




