I-Corps: Machine Learning Approach for Microbial Process Control and Management
I-Corps:微生物过程控制和管理的机器学习方法
基本信息
- 批准号:1824119
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project will directly affect the treatment and management of the over 80 km3 of wastewater and solid wastes produced each year in the US. Waste treatment processes are directly tied to environmental and human health in both developed and developing countries but are subject to high costs due to significant energy and maintenance requirements. Municipal wastewater treatment alone accounts for about 3% of electrical energy consumed in the U.S and other developed countries. The successful implementation of the proposed technology, which integrates artificial intelligence (AI) into existing waste treatment infrastructure, has the potential to greatly improve the management of microbial communities associated with treatment processes thereby improving overall effectiveness and sustainability. This solution represents a new way for customers to cut energy and operational costs and improve effectiveness of their treatment processes without large investments in infrastructure. Potential markets for this technology include public, municipal facilities in addition to treatment facilities in the industrial/agricultural sector. Development of the proposed technology will likely spur additional applications of AI systems in other fields centered around microbial community based engineered systems like bioproduct production, biosensing, and bioremediation.This I-Corps project is based on our recent development of a machine learning based approach used to accurately predict microbial community structure, process stability, and reactor performance for wastewater treatment. This novel approach, which incorporates genomic data along with environmental and operational parameters into data-mining datasets has demonstrated significant increases in accurately predicting process stability and performance of small-scale wastewater systems compared to models developed without consideration of microbial community dynamics. The predictive models developed through the construction of artificial neural networks have potential to inform engineering decisions for optimized performance and stability of environmental biotechnologies in full-scale systems. Development and implementation of this approach will not only progress the understanding and control of microbial communities that inhabit environmental biotechnologies but may be expanded to other microbiomes such as those associated with human health and biogeochemical cycles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目的广泛影响/商业潜力将直接影响到美国每年产生的80多立方千米的废水和固体废物的处理和管理。在发达国家和发展中国家,废物处理过程与环境和人类健康直接相关,但由于需要大量能源和维护,其成本很高。在美国和其他发达国家,仅城市污水处理一项就消耗了约3%的电能。该技术将人工智能(AI)集成到现有的废物处理基础设施中,成功实施该技术有可能大大改善与处理过程相关的微生物群落的管理,从而提高整体有效性和可持续性。该解决方案为客户提供了一种新的方式,可以降低能源和运营成本,提高处理过程的有效性,而无需在基础设施上进行大量投资。这项技术的潜在市场除了工业/农业部门的处理设施外,还包括公共、市政设施。拟议技术的发展可能会刺激人工智能系统在其他领域的应用,这些领域以基于微生物群落的工程系统为中心,如生物产品生产、生物传感和生物修复。这个I-Corps项目是基于我们最近开发的一种基于机器学习的方法,用于准确预测废水处理中的微生物群落结构、过程稳定性和反应器性能。与不考虑微生物群落动态的模型相比,这种将基因组数据以及环境和操作参数纳入数据挖掘数据集的新方法在准确预测小规模废水系统的过程稳定性和性能方面有了显著提高。通过构建人工神经网络开发的预测模型有可能为工程决策提供信息,以优化全尺寸系统中环境生物技术的性能和稳定性。这种方法的发展和实施不仅将促进对居住在环境生物技术中的微生物群落的理解和控制,而且可以扩展到其他微生物群落,例如与人类健康和生物地球化学循环有关的微生物群落。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Liu其他文献
Facile and Scalable Synthesis of Si@void@C Embedded in Interconnected Three-Dimensional Porous Carbon Architecture for High Performance Lithium Ion Batteries
嵌入互连三维多孔碳结构的 Si@void@C 的简便且可扩展的合成,用于高性能锂离子电池
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.7
- 作者:
Jingyun Ma;Hua Tan;Hong Liu;Yimin Chao - 通讯作者:
Yimin Chao
Effect of heparin-superoxide dismutase on γ-radiation induced DNA damage in vitro and in vivo.
肝素超氧化物歧化酶对体外和体内 γ 辐射诱导的 DNA 损伤的影响。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3.1
- 作者:
Jinfeng Liu;Xuan Wang;Haining Tan;Hong Liu;Yonggang Wang;Renqin Chen;Jichao Cao;Fengshan Wang - 通讯作者:
Fengshan Wang
Recyclable Ligands for the Non-Enzymatic Dynamic Kinetic Resolution of Challenging a-Amino Acids.
用于非酶动态动力学拆分具有挑战性的 α-氨基酸的可回收配体。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hiroki Moriwaki;Aki Kawashima;Vadim A. Soloshonok;Hong Liu - 通讯作者:
Hong Liu
Transcatheter arterial chemoembolisation combined with lenvatinib and cabozantinib in the treatment of advanced hepatocellular carcinoma.
经导管动脉化疗栓塞联合乐伐替尼和卡博替尼治疗晚期肝细胞癌。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
Hong Liu;Xue;Jian;Qin Yang;Dai;Yong;Feng;Bo Li;Qi;Jun Zhang - 通讯作者:
Jun Zhang
Influences of Solid to Liquid Ratio on Bio-Hydrogen Production from Smashed Banana by Photosynthetic Bacteria HAU-M1
固液比对光合细菌HAU-M1粉碎香蕉产氢的影响
- DOI:
10.1166/jbmb.2018.1764 - 发表时间:
2018-06 - 期刊:
- 影响因子:0.5
- 作者:
Yameng Li;Hong Liu;Quanguo Zhang;Tian Zhang;Shengnan Zhu;Zhiping Zhang - 通讯作者:
Zhiping Zhang
Hong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Liu', 18)}}的其他基金
IUCRC Planning Grant Embry-Riddle Aeronautical University: Center for Aviation Big Data Analytics [ABDA]
IUCRC 规划拨款 安柏里德航空大学:航空大数据分析中心 [ABDA]
- 批准号:
2231629 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Distributed Learning for Undergraduate Programs in Data Science at Diverse Universities
不同大学数据科学本科课程的分布式学习
- 批准号:
2142514 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: IGE: Graduate Education in Cyber-Physical Systems Engineering
合作研究:IGE:网络物理系统工程研究生教育
- 批准号:
2105718 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
AIR Option 1: Technology Translation Sustainable Wastewater Treatment System for Food and Beverage Industry
AIR方案1:食品饮料行业可持续废水处理系统技术转化
- 批准号:
1312301 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Coalition for Undergraduate Computational Science & Engineering: Proof of Concept
本科生计算科学联盟
- 批准号:
1244967 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Microbial Fuel Cells for Decentralized Wastewater Treatment and Energy Generation
I-Corps:用于分散式废水处理和能源生产的微生物燃料电池
- 批准号:
1265144 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Electromicrobiological Studies Using Microbial Electrochemical Systems Capable of Sustainable Energy Production and Waste Treatment
职业:利用能够可持续能源生产和废物处理的微生物电化学系统进行电微生物学研究
- 批准号:
0955124 - 财政年份:2010
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
High Efficiency Bio-electrolytic Hydrogen Production from Biomass Using Nanostructure-Decorated Electrodes
使用纳米结构装饰电极从生物质中高效生物电解制氢
- 批准号:
0828544 - 财政年份:2008
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Machine Learning Risk Stratification Tool for Venous Thromboembolism
I-Corps:机器学习风险分层工具对静脉血栓栓塞的转化潜力
- 批准号:
2420417 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning-Based Burn Injury Diagnosis and Care
I-Corps:基于机器学习的烧伤诊断和护理
- 批准号:
2326781 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: A Machine Learning Tool for Medical Device History and Recalls
I-Corps:用于医疗器械历史和召回的机器学习工具
- 批准号:
2334058 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning Algorithm for Cardiovascular Disease Diagnosis
I-Corps:用于心血管疾病诊断的机器学习算法
- 批准号:
2331156 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: A machine learning model based on neural networks trained to recognize correlations and patterns that indicates possible medical complications
I-Corps:基于神经网络的机器学习模型,经过训练可以识别指示可能的医疗并发症的相关性和模式
- 批准号:
2321426 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning and Bio-Signal Processing for Enhancing Empathy Training
I-Corps:用于增强同理心训练的机器学习和生物信号处理
- 批准号:
2237325 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Machine Learning Enhanced Automated Circuit Configuration and Evaluation of Power Converters
I-Corps:机器学习增强电源转换器的自动化电路配置和评估
- 批准号:
2245187 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
- 批准号:
2224299 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Automated Pavement Evaluation Using Advanced Machine Learning
I-Corps:使用先进机器学习自动路面评估
- 批准号:
2229743 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant














{{item.name}}会员




