CAREER: Large-Scale Computational Neuroimaging of Brain Electrical Activity
职业:脑电活动的大规模计算神经成像
基本信息
- 批准号:0955260
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current EEG/MEG based neuroimaging technologies receive limited attentions in functional neuroimaging because their reliable performances have not been successfully demonstrated in sophisticated brain tasks. The need for more reliable, efficient, innovative EEG/MEG neuroimaging technologies that have high spatial and temporal resolutions is urgent. The goal of proposed research is to advance functional neuroimaging technologies in studying human brain functions, via integrating novel techniques from different disciplines, i.e. multi-resolution mathematic models, large-scale computation, advanced signal and image processing, and high-end measurement devices. Intellectual Merit: The proposed research consists of applying the well-established L-1 norm regularization technique to a different application domain, namely EEG/MEG image analysis. The problem of image analysis is an undetermined problem, and as such some form of regularization is required. The traditional approach is to apply L-2 norm minimization, which is a valid method when measurement errors are Gaussian random variables. However, when the measurement errors are exponentially distributed, it is more meaningful to use L-1 norm minimization. Moreover, the L-1 optimal solution is supported on a finite (usually small) number of data points, thus naturally taking advantage of the sparse nature of the optimization problem. The novelty of the proposed research is the investigation of sparsity inducing models of neural behavior. In the case of neuro-imaging, it is known from biological factors that during any one millisecond interval, only a tiny fraction of the neurons in the brain "fire". The proposed research therefore has the potential to identify the parameters that describe this behavior. As partial evidence of this, the PI has obtained some preliminary results based on synthetic data, when the correct answer is known, and the results are encouraging.Broader Impact: The project will generate novel problem-solving strategies for scientific problems using advanced engineering principles, and to clinical practice for neurological patients through the potential for reduction in loss of life, job, and income. By incorporating authentic learning education activities, we will broaden the participation of all levels of students, K-12 teachers, and other educators, in biomedical research and research educations.
目前基于EEG/MEG的神经成像技术在功能性神经成像中受到有限的关注,因为它们的可靠性能尚未在复杂的大脑任务中得到成功证明。迫切需要具有高空间和时间分辨率的更可靠、高效、创新的EEG/MEG神经成像技术。拟议研究的目标是通过整合不同学科的新技术,即多分辨率数学模型,大规模计算,先进的信号和图像处理以及高端测量设备,推进功能神经成像技术在研究人脑功能方面的应用。智力优势:拟议的研究包括应用完善的L-1范数正则化技术到不同的应用领域,即EEG/MEG图像分析。图像分析问题是一个未确定的问题,因此需要某种形式的正则化。传统的方法是应用L-2范数最小化,这是一个有效的方法时,测量误差是高斯随机变量。而当测量误差服从指数分布时,采用L-1范数最小化方法更有意义。此外,L-1最优解是在有限(通常很小)数量的数据点上得到支持的,因此自然地利用了优化问题的稀疏性。所提出的研究的新奇是稀疏诱导模型的神经行为的调查。在神经成像的情况下,从生物学因素可知,在任何一毫秒的时间间隔内,大脑中只有一小部分神经元“放电”。因此,拟议的研究有可能确定描述这种行为的参数。作为这方面的部分证据,PI已经基于已知正确答案的合成数据获得了一些初步结果,结果令人鼓舞。更广泛的影响:该项目将使用先进的工程原理为科学问题产生新的问题解决策略,并通过减少生命、工作和收入损失的潜力为神经系统患者提供临床实践。通过整合真实的学习教育活动,我们将扩大各级学生,K-12教师和其他教育工作者在生物医学研究和研究教育中的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Ding其他文献
Application of Knowledge Graph Technology in the Field of Power Grid Infrastructure
知识图谱技术在电网基础设施领域的应用
- DOI:
10.1109/iccsie56462.2022.00020 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hongyu Liu;Yongxue Fan;Lei Ding - 通讯作者:
Lei Ding
Distributed Nash Equilibrium Seeking for General Networked Games with Bounded Disturbances
一般网络博弈有界扰动的分布式纳什均衡求解
- DOI:
10.1109/jas.2022.105428 - 发表时间:
2022-01 - 期刊:
- 影响因子:0
- 作者:
Maojiao Ye;Danhu Li;Qing-Long Han;Lei Ding - 通讯作者:
Lei Ding
Are Smart Home Devices Abandoning IPV Victims?
智能家居设备正在放弃IPV受害者吗?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Alshehri;M. B. Salem;Lei Ding - 通讯作者:
Lei Ding
Characteristics and Mechanisms of As(Iii) Removal by Potassium Ferrate Coupled with Al-Based Coagulants: Analysis of Aluminum Speciation Distribution and Transformation
高铁酸钾与铝基混凝剂联用去除As(III)的特性和机理:铝形态分布和转化分析
- DOI:
10.2139/ssrn.4026065 - 发表时间:
2022 - 期刊:
- 影响因子:8.8
- 作者:
Yanli Kong;Yaqian Ma;Zhiyan Huang;Jiangya Ma;Lei Ding;Yong Nie;Zhonglin Chen;Jimin Shen;Yuan Huang - 通讯作者:
Yuan Huang
Biochemical and molecular characterization of Alternaria alternata isolates highly resistant to procymidone from broccoli and cabbage
- DOI:
https://doi.org/10.1186/s42483-021-00092-z - 发表时间:
2021 - 期刊:
- 影响因子:3.4
- 作者:
Bingran Wang;Tiancheng Lou;Lingling Wei;Wenchan Chen;Longbing Huang;Lei Ding;Weicheng Zhao;Pengcheng Zhang;Patrick Sun;Changjun Chen;Kai wang - 通讯作者:
Kai wang
Lei Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
- 批准号:
2239566 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
- 批准号:
2237574 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant