CAREER: An Integrated Proposal Based on The Corona Problem

职业:基于新冠问题的综合提案

基本信息

  • 批准号:
    0955432
  • 负责人:
  • 金额:
    $ 44.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

The research objective of this project is to conduct a deeper study of the Corona Problem, using tools and techniques developed in interrelated areas of analysis, with a goal of settling open and important questions. The Corona Problem can be phrased as a question about left invertibility of matrices in particular algebras of analytic functions. Additionally, it has formulations in the areas of operator theory, complex differential geometry, functional analysis, and commutative algebra. The Corona Problem has served as an impetus for research in four main areas of analysis: complex analysis, function theory, harmonic analysis, and operator theory. Additionally, it arises in real-world applications through the use of control theory to engineering questions. This research program utilizes knowledge and techniques from these broad areas of analysis to provide an array of tools with which to approach the challenging questions raised in this project. The proposed research is based on recent, significant contributions made by the principal investigatorr and focuses on key questions connected to the Corona Problem. In particular, the principal investigator will address questions that relate the Corona Problem to complex differential geometry via the curvature of canonical vector bundles associated with the problem. The Corona Problem will additionally be studied for more general multiplier algebras of analytic functions. Finally, the connection with the Corona Problem and control theory will be explored via the computation of the stable rank of rings of analytic functions. The project's educational component creates a novel "Internet Analysis Seminar" that provides a forum for researchers in these areas to interact and learn from one another, both academically and professionally. The seminar includes three phases involving Internet lectures, working groups, and a final conference. A primary goal is to increase the collaborative learning and mentoring between graduate students, postdoctoral researchers, and senior faculty across the country. The seminar takes the standard dissemination of research results further, providing an open, inclusive setting for junior mathematicians to learn new research concepts and apply them through group projects with more senior researchers. Moreover, the project integrates the principal investigator's current and future research with an ambitious educational component: the cutting-edge research will provide many of the topics selected for the Internet seminar, and seminar participants will likely collaborate on future research projects. Solutions to the research questions investigated in this project will have countless applications in complex analysis, function theory, harmonic analysis, and operator theory. Not only will they open the way to additional mathematical inquiry, but they will also have significant application to real-world ideas, in particular in the area of control theory. The educational component seeks to broaden the participation of isolated researchers and underrepresented groups by creating an open and inclusive research forum in which any researcher can participate. Participants will be able to work with, and optimally be mentored by, some of the top experts in their fields regardless of geographic location.
该项目的研究目标是利用在相关分析领域开发的工具和技术对日冕问题进行更深入的研究,目的是解决公开和重要的问题。CORONA问题可以表述为一个关于矩阵的左可逆性的问题,特别是解析函数的代数。此外,它还在算子理论、复微分几何、泛函分析和交换代数等领域有公式。日冕问题推动了四个主要分析领域的研究:复分析、函数理论、调和分析和算子理论。此外,它还出现在实际应用中,通过使用控制理论来解决工程问题。这项研究计划利用这些广泛的分析领域的知识和技术来提供一系列工具,用来解决本项目中提出的具有挑战性的问题。拟议的研究是基于首席调查员最近作出的重大贡献,并侧重于与日冕问题有关的关键问题。特别是,主要研究人员将通过与问题相关的正则向量丛的曲率来解决将日冕问题与复杂微分几何联系起来的问题。另外,我们还将研究更一般的解析函数乘子代数的电晕问题。最后,通过计算解析函数环的稳定秩来探讨它与日冕问题和控制论的联系。该项目的教育部分创建了一个新颖的“互联网分析研讨会”,为这些领域的研究人员提供了一个在学术和专业方面相互交流和相互学习的论坛。研讨会包括三个阶段,包括互联网讲座、工作组和期末会议。主要目标是加强全国研究生、博士后研究人员和高级教职员工之间的协作学习和指导。研讨会进一步规范了研究成果的传播,为初级数学家提供了一个开放、包容的环境,让他们学习新的研究概念,并通过与更多资深研究人员的小组项目来应用这些概念。此外,该项目将首席研究员当前和未来的研究与雄心勃勃的教育部分结合在一起:尖端研究将提供许多为互联网研讨会选择的主题,研讨会参与者可能会就未来的研究项目进行合作。本项目所研究问题的解决方案将在复变分析、函数论、调和分析和算子理论中有无数的应用。它们不仅将为更多的数学探索开辟道路,而且还将在现实世界的想法中有重要的应用,特别是在控制理论领域。教育部分寻求扩大孤立的研究人员和代表性不足的群体的参与,方法是建立一个开放和包容的研究论坛,任何研究人员都可以参与。参与者将能够与各自领域的一些顶尖专家合作,并得到他们的最佳指导,而不受地理位置的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brett Wick其他文献

Steven George Krantz (1951 -) Celebrates his 70th Birthday
  • DOI:
    10.1007/s11785-023-01480-3
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Arni S. R. Srinivasa Rao;Siqi Fu;Gregory Knese;Kaushal Verma;Brett Wick
  • 通讯作者:
    Brett Wick

Brett Wick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brett Wick', 18)}}的其他基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
Conference: Recent Advances and Past Accomplishments in Harmonic Analysis
会议:谐波分析的最新进展和过去的成就
  • 批准号:
    2230844
  • 财政年份:
    2022
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
Symmetry Parameter Analysis of Singular Integrals
奇异积分的对称参数分析
  • 批准号:
    2054863
  • 财政年份:
    2021
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
Singular Integrals with Modulation or Rotational Symmetry
具有调制或旋转对称性的奇异积分
  • 批准号:
    2000510
  • 财政年份:
    2019
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
International Conference on Interpolation in Spaces of Analytic Functions at CIRM
CIRM 解析函数空间插值国际会议
  • 批准号:
    1936503
  • 财政年份:
    2019
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
Applications of Harmonic Analysis to Riesz Transforms and Commutators beyond the Classical Settings
谐波分析在经典设置之外的 Riesz 变换和换向器中的应用
  • 批准号:
    1800057
  • 财政年份:
    2018
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
  • 批准号:
    1500509
  • 财政年份:
    2015
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Proposal Based on The Corona Problem
职业:基于新冠问题的综合提案
  • 批准号:
    1603246
  • 财政年份:
    2015
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Continuing Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
  • 批准号:
    1560955
  • 财政年份:
    2015
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Proposal for a New Power Converter for Medium Voltage Integrated Variable Speed Motor Drives
针对中压集成变速电机驱动器的新型电源转换器的提案
  • 批准号:
    2780182
  • 财政年份:
    2022
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Studentship
Collaborative Proposal: CRCNS US-German Data Sharing Proposal: DataLad - a decentralized system for integrated discovery, management, and publication of digital objects of science
合作提案:CRCNS 美德数据共享提案:DataLad - 一个用于集成发现、管理和出版科学数字对象的去中心化系统
  • 批准号:
    2148700
  • 财政年份:
    2021
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Collaborative Research: Electrophysiome: comprehensive recording and integrated modeling of the C. elegans nervous system
CRCNS 研究提案:合作研究:电生理组:线虫神经系统的全面记录和集成建模
  • 批准号:
    2113003
  • 财政年份:
    2021
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
Proposal for Lab2Market I2I Market Assessment Integrated micromachined sensors for pest detection
Lab2Market I2I 市场评估提案用于害虫检测的集成微机械传感器
  • 批准号:
    571225-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Idea to Innovation
NSFGEO-NERC Proposal: Integrated Experimental and Dynamical Modeling of Top-down Crystallization in Terrestrial Cores: Implications for Core Cooling in the Earth
NSFGEO-NERC 提案:陆地核心自上而下结晶的综合实验和动态建模:对地球核心冷却的影响
  • 批准号:
    2152686
  • 财政年份:
    2021
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Continuing Grant
CRCNS Research Proposal: Collaborative Research: Electrophysiome: comprehensive recording and integrated modeling of the C. elegans nervous system
CRCNS 研究提案:合作研究:电生理组:线虫神经系统的全面记录和集成建模
  • 批准号:
    2113120
  • 财政年份:
    2021
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Standard Grant
A Proposal of Novel Integrated On-board Converter for EVs with Dynamic Wireless Power Transfer System
具有动态无线电力传输系统的新型电动汽车集成车载转换器的提案
  • 批准号:
    20K14723
  • 财政年份:
    2020
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Proposal of Integrated Microwave Reactors in Microfluidics
微流控集成微波反应器的提议
  • 批准号:
    19K05142
  • 财政年份:
    2019
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A model proposal for a community-based integrated care system that promotes cooperation between medical care and welfare in island areas
促进海岛地区医疗福利合作的社区综合护理体系示范提案
  • 批准号:
    19K15171
  • 财政年份:
    2019
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Invited Renewal Proposal: EPSRC Fellowships in Manufacturing: Additive nanomanufacturing techniques for integrated device fabrication
邀请更新提案:EPSRC 制造奖学金:用于集成设备制造的增材纳米制造技术
  • 批准号:
    EP/R001677/1
  • 财政年份:
    2019
  • 资助金额:
    $ 44.94万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了