Applications of Harmonic Analysis to Riesz Transforms and Commutators beyond the Classical Settings

谐波分析在经典设置之外的 Riesz 变换和换向器中的应用

基本信息

  • 批准号:
    1800057
  • 负责人:
  • 金额:
    $ 23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The mathematical discipline of analysis has been fundamental in understanding physical phenomena in the natural sciences and engineering. The behavior of a function (size, smoothness, quantitative information) that are solutions to differential equations are important. In understanding a function it is frequently useful to have "simpler" building blocks to work with. Particular mathematical tools that have proved extremely useful in addressing questions of these types and providing a framework to analyze these simple building blocks lie within the realm of harmonic analysis. A main goal of this project is to provide a deeper understanding of some of the simple building blocks that arise in important function spaces connected to function theory and partial differential equations by using and advancing the tools of harmonic analysis.This project outlines a research program combining recent results with motivation from function theory and operator theory to study questions related to the boundedness of commutators associated to Riesz transforms arising from differential operators and understanding the boundedness of the Riesz transform on a manifold with ends. The research direction couples the past work by the principal investigator with questions about boundedness of commutators with Riesz transforms associated to differential operators. In particular, the problems discussed are aimed at obtaining a better understanding of the differential operators and geometry where one can characterize appropriate BMO spaces in terms of commutators with Riesz transforms; equivalently demonstrate that the appropriate Hardy space possesses a weak factorization. A second research direction provides a holomorphic functional calculus on a manifold with ends and studies the open question of obtaining the boundedness of the Riesz transform using ideas from non-homogeneous harmonic analysis and the techniques developed by the principal investigator. Graduate students with whom the principal investigator works will be included in these and related projects, and will receive advising and career mentoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分析的数学学科一直是理解自然科学和工程中的物理现象的基础。作为微分方程解的函数的行为(大小、光滑度、定量信息)很重要。在理解函数时,使用“更简单”的构建块通常是有用的。事实证明,在解决这类问题并提供分析这些简单构件的框架方面非常有用的特殊数学工具属于调和分析领域。这个项目的一个主要目标是通过使用和发展调和分析的工具,对与函数论和偏微分方程有关的重要函数空间中出现的一些简单构件有更深入的理解。这个项目概述了一个研究方案,将最近的结果与函数论和算子理论的动机相结合,研究与由微分算子产生的Riesz变换的交换子的有界性有关的问题,并理解Riesz变换在有端流形上的有界性。研究方向结合了主要研究者过去的工作和关于交换子的有界性的问题,以及与微分算子相关的Riesz变换。特别地,所讨论的问题旨在更好地理解微分算子和几何,其中人们可以用Riesz变换的交换子来刻画适当的BMO空间;等价地证明适当的Hardy空间具有弱因式分解。第二个研究方向是在有端点的流形上建立一个全纯泛函演算,并利用非齐次调和分析的思想和主要研究者发展的技巧研究Riesz变换的有界性这一公开问题。与首席研究员合作的研究生将被包括在这些项目和相关项目中,并将得到建议和职业指导。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bilinear wavelet representation ofCalderón–Zygmund forms
Calderón-Zygmund 形式的双线性小波表示
  • DOI:
    10.2140/paa.2023.5.47
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Di Plinio, Francesco;Green, Walton;Wick, Brett D.
  • 通讯作者:
    Wick, Brett D.
Interpolation in model spaces
模型空间中的插值
  • DOI:
    10.1090/bproc/59
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gorkin, Pamela;Wick, Brett D.
  • 通讯作者:
    Wick, Brett D.
Hardy Factorization in Terms of Multilinear CalderÓN–Zygmund Operators using Morrey Spaces
  • DOI:
    10.1007/s11118-021-09960-x
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    N. Dao;B. Wick
  • 通讯作者:
    N. Dao;B. Wick
Weighted estimates for operators associated to the Bergman-Besov kernels
与 Bergman-Besov 核相关的算子的加权估计
  • DOI:
    10.21494/iste.op.2022.0838
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Békollè, David;Keumo, Adriel R.;Tchoundja, Edgar L.;Wick, Brett D.
  • 通讯作者:
    Wick, Brett D.
Weighted estimates for the Bergman projection on the Hartogs triangle
哈托格斯三角形上的伯格曼投影的加权估计
  • DOI:
    10.1016/j.jfa.2020.108727
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Huo, Zhenghui;Wick, Brett D.
  • 通讯作者:
    Wick, Brett D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brett Wick其他文献

Steven George Krantz (1951 -) Celebrates his 70th Birthday
  • DOI:
    10.1007/s11785-023-01480-3
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Arni S. R. Srinivasa Rao;Siqi Fu;Gregory Knese;Kaushal Verma;Brett Wick
  • 通讯作者:
    Brett Wick

Brett Wick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brett Wick', 18)}}的其他基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Conference: Recent Advances and Past Accomplishments in Harmonic Analysis
会议:谐波分析的最新进展和过去的成就
  • 批准号:
    2230844
  • 财政年份:
    2022
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Symmetry Parameter Analysis of Singular Integrals
奇异积分的对称参数分析
  • 批准号:
    2054863
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Singular Integrals with Modulation or Rotational Symmetry
具有调制或旋转对称性的奇异积分
  • 批准号:
    2000510
  • 财政年份:
    2019
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
International Conference on Interpolation in Spaces of Analytic Functions at CIRM
CIRM 解析函数空间插值国际会议
  • 批准号:
    1936503
  • 财政年份:
    2019
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
  • 批准号:
    1500509
  • 财政年份:
    2015
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Proposal Based on The Corona Problem
职业:基于新冠问题的综合提案
  • 批准号:
    1603246
  • 财政年份:
    2015
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Applications of Harmonic Analysis to Function Theory and Operator Theory
调和分析在函数论和算子理论中的应用
  • 批准号:
    1560955
  • 财政年份:
    2015
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
The Corona Problem: Connections between Operator Theory, Function Theory and Geometry
电晕问题:算子理论、函数论和几何之间的联系
  • 批准号:
    1200994
  • 财政年份:
    2012
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
  • 批准号:
    2246779
  • 财政年份:
    2023
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Multilinear Harmonic Analysis and Applications
多线性谐波分析及应用
  • 批准号:
    2154356
  • 财政年份:
    2022
  • 资助金额:
    $ 23万
  • 项目类别:
    Standard Grant
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2022
  • 资助金额:
    $ 23万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
  • 批准号:
    2044898
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
EAGER: CDS&E: Applied geometry and harmonic analysis in deep learning regularization: theory and applications
渴望:CDS
  • 批准号:
    2140982
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
  • 批准号:
    RGPIN-2017-05712
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Discovery Grants Program - Individual
Free harmonic analysis and applications
免费谐波分析和应用
  • 批准号:
    RGPIN-2016-03796
  • 财政年份:
    2021
  • 资助金额:
    $ 23万
  • 项目类别:
    Discovery Grants Program - Individual
CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications
CDS
  • 批准号:
    2052525
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Continuing Grant
Operator Theory and Harmonic Analysis with Applications to Physics
算子理论和调和分析及其在物理学中的应用
  • 批准号:
    553881-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Free harmonic analysis and applications
免费谐波分析和应用
  • 批准号:
    RGPIN-2016-03796
  • 财政年份:
    2020
  • 资助金额:
    $ 23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了