CAREER: Chemical Frustration - A Guiding Principle for the Discovery and Interpretation of New Complex Intermetallic Phases

职业:化学挫败——发现和解释新的复杂金属间相的指导原则

基本信息

  • 批准号:
    0955590
  • 负责人:
  • 金额:
    $ 60.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-02-01 至 2011-01-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: Synthetic and structural studies are continuously revealing intermetallic phases to be a domain of unparalleled structural complexity and diversity. The rate at which this diversity is expanding far exceeds that of the development of theoretical models capable of accounting for and making predictions regarding this structural chemistry. The absence of such models is a bottleneck in the design of new intermetallic and alloy materials with tailored structures. A common theme can be perceived in the results of recent theoretical and experimental studies on complex intermetallic phases that may serve as the basis for a more comprehensive theoretical framework. Structural complexity in these phases can often be traced to a competition between or coexistence of mutually exclusive bonding or geometrical packing modes, a tension referred to here as "chemical frustration", by analogy with the phenomenon of magnetic frustration. Under the support of the SSMC/DMR program, this project aims to develop this concept through the examination of intermetallic systems designed to contain inherent tensions between variants on simple close-packing (SCP) and tetrahedra-based packing (TCP). Intermetallic systems will be studied with solid state synthesis aimed at the discovery of new phases, the structural analysis of these new phases, and electronic structure calculations. The theoretical efforts will include the development of theoretical tools designed for the detection and analysis of competing chemical bonding types. These theoretical tools will be based on the Moments Method applied to Hückel calculations calibrated against Density Functional Theory (DFT) results. In parallel, an education plan will be pursued involving the creation of the Solid State Chemistry Web Resource Library as part of the National Science Digital Library, as well as the development of materials for this library.NON-TECHNICAL SUMMARY: Intermetallic phases form a broad family of compounds of immense importance to materials science. They adopt a diverse array of crystal structures that has yet to be accounted for with chemical bonding concepts. The absence of a theoretical framework for understanding and predicting the preferred crystal structures of these phases is a limiting factor in the design of new metallic materials with useful properties for hydrogen storage, catalysis, and superconductivity. In this SSMC/DMR-supported project, a joint theoretical and experiment approach is taken to develop understanding the driving forces underlying the crystal structures of these phases, and to gain some degree of control over these structures. The approach draws a common theme that has been perceived in some of the most complex intermetallic crystal structures: structural complexity can be linked to a tension between mutually exclusive bonding types coexisting in the same phase. In this project, new compounds will be sought out by inducing such tension through the selection of combinations of elements with inherent conflicts in the preferred types of chemical bonding and atomic packing. This approach to the design of new intermetallic structures has the potential of facilitating the development of new alloys for a wide range of applications. Several of the compounds to be investigated are also anticipated to have useful materials properties for hydrogen storage and superconductivity. The educational and social impacts of this work will also be considerable: the project will include the creation of the Solid State Chemistry Web Resource Library, a repository of educational materials for chemistry teachers and instructors interested in including current topics in materials science in their classes. The project will promote diversity in science through the participation of members of underrepresented groups.
技术总结:合成和结构研究不断揭示金属间相是一个结构复杂性和多样性无与伦比的领域。这种多样性扩展的速度远远超过了能够解释和预测这种结构化学的理论模型的发展速度。缺乏这样的模型是设计具有定制结构的新型金属间化合物和合金材料的瓶颈。在最近关于复杂金属间相的理论和实验研究的结果中可以看出一个共同的主题,这些研究可以作为更全面的理论框架的基础。这些阶段的结构复杂性通常可以追溯到相互排斥的键合或几何堆积模式之间的竞争或共存,这里将张力称为“化学挫折”,类比于磁挫折现象。在SSMC/DMR项目的支持下,该项目旨在通过检查金属间体系来发展这一概念,这些体系旨在包含简单紧密填料(SCP)和四面体填料(TCP)变体之间的固有张力。金属间系统将研究固态合成旨在发现新相,这些新相的结构分析,和电子结构计算。理论方面的努力将包括开发用于检测和分析相互竞争的化学键类型的理论工具。这些理论工具将基于矩法应用于h<s:1> ckel计算校准密度泛函理论(DFT)的结果。与此同时,一项教育计划将涉及创建固态化学网络资源库,作为国家科学数字图书馆的一部分,以及为该图书馆开发材料。非技术概述:金属间相构成了一个广泛的化合物家族,对材料科学具有极其重要的意义。它们采用了各种各样的晶体结构,这些结构还不能用化学键的概念来解释。缺乏理解和预测这些相的首选晶体结构的理论框架是设计具有储氢、催化和超导性能的新型金属材料的限制因素。在这个由SSMC/ dmr支持的项目中,采用理论和实验相结合的方法来了解这些相的晶体结构的驱动力,并对这些结构进行一定程度的控制。该方法得出了一个在一些最复杂的金属间晶体结构中已经被感知到的共同主题:结构复杂性可以与在同一相中共存的互斥键类型之间的张力联系在一起。在这个项目中,新的化合物将通过在化学键和原子包装的首选类型中选择具有固有冲突的元素组合来诱导这种张力。这种设计新型金属间结构的方法具有促进新合金开发的潜力,具有广泛的应用前景。一些待研究的化合物也有望具有储氢和超导的有用材料性质。这项工作的教育和社会影响也将是相当可观的:该项目将包括创建固态化学网络资源库,这是一个为化学教师和有兴趣在课堂上包括当前材料科学主题的讲师提供教育材料的资源库。该项目将通过代表性不足的群体成员的参与促进科学的多样性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Fredrickson其他文献

Daniel Fredrickson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Fredrickson', 18)}}的其他基金

Discovery and Design with the FAST Principle: Following Local Models of Stability to Emergent Phenomena in Intermetallic Structures
使用 FAST 原理进行发现和设计:遵循金属间结构中涌现现象的稳定性局部模型
  • 批准号:
    2127349
  • 财政年份:
    2021
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Continuing Grant
Frustrated and Allowed Structural Transitions: Towards a Predictive Framework for the Structural Chemistry of Intermetallic Phases
受挫和允许的结构转变:金属间相结构化学的预测框架
  • 批准号:
    1809594
  • 财政年份:
    2018
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant
Perceiving Function in Geometrical Beauty: Chemical Pressure as a Link between Structure and Properties in Intermetallics
几何美感的感知功能:化学压力作为金属间化合物结构和性能之间的联系
  • 批准号:
    1508496
  • 财政年份:
    2015
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Continuing Grant
Structural Plasticity in Intermetallics: Shaping the Crystal Structures of Metals and Alloys with Chemical Pressure
金属间化合物的结构塑性:用化学压力塑造金属和合金的晶体结构
  • 批准号:
    1207409
  • 财政年份:
    2012
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Continuing Grant
Samson Phases: Interplay of Theoretical Ideas and the Synthesis of New Phases
参孙相:理论思想的相互作用和新相的合成
  • 批准号:
    0502582
  • 财政年份:
    2005
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Fellowship

相似国自然基金

Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Continuing Grant
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
  • 批准号:
    2415569
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Standard Grant
Chemical staples and chemical probes to dissect dynamins cellular roles.
用于剖析动力细胞作用的化学钉书和化学探针。
  • 批准号:
    DP240100514
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Discovery Projects
Planet Chicken: Chemical Entanglements in Asia's Poultry Boom
《鸡星球》:亚洲家禽繁荣中的化学纠缠
  • 批准号:
    DP240100187
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Discovery Projects
Enabling precision engineering of complex chemical products for high value technology sectors.
为高价值技术领域实现复杂化学产品的精密工程。
  • 批准号:
    EP/X040992/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grant
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
  • 批准号:
    EP/Y004167/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Research Grant
Phase 2 - Effective and Integrated Chemical Free Robotic Milking
第 2 阶段 - 有效且集成的无化学品机器人挤奶
  • 批准号:
    10093094
  • 财政年份:
    2024
  • 资助金额:
    $ 60.1万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了