Structural Plasticity in Intermetallics: Shaping the Crystal Structures of Metals and Alloys with Chemical Pressure
金属间化合物的结构塑性:用化学压力塑造金属和合金的晶体结构
基本信息
- 批准号:1207409
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYIntermetallic phases combine a diverse structural chemistry with a range of valuable physical and chemical properties, including superconductivity, thermoelectric, hydrogen storage, catalysis, and a variety of magnetic phenomena. A limiting factor in the development of materials from these compounds is the difficulty encountered when attempting to synthetically guide or control their crystal structures. The focus of this project supported by the Solid State and Materials Chemistry (SSMC) program is the development of a new conceptual framework for understanding and harnessing the chemical driving forces underlying intermetallic crystal structures: Structural Plasticity. The structures of many complex intermetallic phases can be viewed as being built from fragments of simpler structure types, which are separated by interfaces. Such atomic arrangements recall the dislocations that are induced by mechanical stress in a malleable metal and mediate a metal's response to such stress. The structural plasticity model hypothesizes that the connection between intermetallics and malleable metals goes beyond geometry: interfaces inserted into a simple structure to create a more complex one alleviate internal stresses that would be present if that original structure were to be adopted in an unmodified form. This project uses a combination of theoretical calculations and experimental work to explore this hypothesis. This includes the development and application of the Density Functional Theory-Chemical Pressure (DFT-CP) analysis, which extracts information about the local pressures, or chemical pressures, acting on individual atoms within a crystal structure from DFT results. The results of chemical pressure analysis and empirical reasoning are used in the synthesis and structure determination of new intermetallic structures that emerge from chemical pressure-induced Structural Plasticity. Three mechanisms by which structures cope with chemical pressure will be explored through this joint theoretical and experimental approach: (1) the insertion of defect planes into a simple structure type, (2) the hosting of one structure type by another, and (3) the formation of quasicrystalline order. NON-TECHNICAL SUMMARYMetals and alloys exhibit a host of useful properties that are expected to play key roles in energy applications, such as storage of hydrogen as a fuel source, the catalysis of chemical reactions at fuel cell electrodes, and the extraction of electrical energy from temperature gradients. Optimizing these properties for applications is severely complicated by the difficulty of controlling the packing geometries of atoms in these materials. The central goal of this research project supported by the Solid State and Materials Chemistry (SSMC) program is to develop an understanding how the chemical bonding determines these atomic arrangements, and strategies based on these insights for tailoring atomic packing to enhance the desired materials properties. This objective will be attained through combining theoretical and computational modeling with the synthesis and characterization of new materials. The project also includes the creation and expansion of online resources for facilitating the incorporation of materials chemistry into high school and undergraduate courses. Included among these resources are the Solid State Chemistry Resource Library and the online textbook Interactive Solid State Chemistry. Together, these will help systematize the wealth of on-line content available as teaching aides for solid state and materials chemistry, and will fill gaps in the coverage of these subjects left by the existing content. Both are to be incorporated in the Chemical Education Digital Library, a pathway in the National Science Digital Library.
技术概述金属间相联合收割机结合了多种结构化学和一系列有价值的物理和化学性质,包括超导性、热电性、储氢性、催化性和各种磁现象。 从这些化合物开发材料的限制因素是在试图合成地引导或控制它们的晶体结构时遇到的困难。该项目由固态和材料化学(SSMC)计划支持,重点是开发一个新的概念框架,用于理解和利用金属间化合物晶体结构的化学驱动力:结构塑性。 许多复杂的金属间相的结构可以被看作是由更简单的结构类型的片段构建的,这些结构类型被界面分开。 这样的原子排列使人想起了由可延展金属中的机械应力引起的位错,并介导了金属对这种应力的反应。 结构塑性模型假设金属间化合物和可延展金属之间的连接超出了几何形状:插入到简单结构中以创建更复杂结构的界面减轻了内部应力,如果原始结构以未修改的形式采用,则会存在这种内部应力。 本项目采用理论计算和实验工作相结合的方法来探索这一假设。 这包括密度泛函理论-化学压力(DFT-CP)分析的发展和应用,该分析从DFT结果中提取作用于晶体结构内单个原子的局部压力或化学压力的信息。 化学压力分析和经验推理的结果被用于合成和结构确定新的金属间化合物结构,出现从化学压力诱导的结构塑性。 通过这种理论和实验的结合,我们将探索结构科普化学压力的三种机制:(1)缺陷平面插入到简单结构类型中,(2)一种结构类型被另一种结构类型托管,(3)准晶有序的形成。 金属和合金表现出许多有用的特性,这些特性有望在能源应用中发挥关键作用,例如作为燃料源的氢的储存、燃料电池电极处化学反应的催化以及从温度梯度中提取电能。 由于难以控制这些材料中原子的堆积几何形状,因此优化这些性能的应用非常复杂。 由固态和材料化学(SSMC)计划支持的这个研究项目的中心目标是了解化学键如何决定这些原子排列,以及基于这些见解的策略,用于定制原子包装以增强所需的材料性能。 这一目标将通过将理论和计算建模与新材料的合成和表征相结合来实现。 该项目还包括创建和扩展在线资源,以促进材料化学纳入高中和本科课程。 这些资源包括固态化学资源库和在线教科书互动固态化学。 总之,这些将有助于系统化丰富的在线内容,可作为固态和材料化学的教学辅助工具,并将填补现有内容留下的这些主题的覆盖范围的空白。 两者都将被纳入化学教育数字图书馆,在国家科学数字图书馆的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Fredrickson其他文献
Daniel Fredrickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Fredrickson', 18)}}的其他基金
Discovery and Design with the FAST Principle: Following Local Models of Stability to Emergent Phenomena in Intermetallic Structures
使用 FAST 原理进行发现和设计:遵循金属间结构中涌现现象的稳定性局部模型
- 批准号:
2127349 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Frustrated and Allowed Structural Transitions: Towards a Predictive Framework for the Structural Chemistry of Intermetallic Phases
受挫和允许的结构转变:金属间相结构化学的预测框架
- 批准号:
1809594 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Perceiving Function in Geometrical Beauty: Chemical Pressure as a Link between Structure and Properties in Intermetallics
几何美感的感知功能:化学压力作为金属间化合物结构和性能之间的联系
- 批准号:
1508496 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Chemical Frustration - A Guiding Principle for the Discovery and Interpretation of New Complex Intermetallic Phases
职业:化学挫败——发现和解释新的复杂金属间相的指导原则
- 批准号:
0955590 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Samson Phases: Interplay of Theoretical Ideas and the Synthesis of New Phases
参孙相:理论思想的相互作用和新相的合成
- 批准号:
0502582 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Fellowship
相似海外基金
Fitness and evolutionary consequences of developmental plasticity
发育可塑性的适应性和进化后果
- 批准号:
DP240102830 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
ROLE SPECIALIZATION AND PLASTICITY AT THE ORIGIN OF EUSOCIALITY
欧洲社会性起源的角色专业化和可塑性
- 批准号:
NE/X014770/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Restoring Brain Plasticity through Sleep
通过睡眠恢复大脑可塑性
- 批准号:
24K09679 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MCA Pilot PUI: Neural Signaling and Mechanisms Underlying Sensory Integration and Plasticity
MCA Pilot PUI:感觉统合和可塑性背后的神经信号和机制
- 批准号:
2322317 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Self-centred vs. other-centred homeostatic plasticity in inhibitory interneurons
抑制性中间神经元中以自我为中心与以他人为中心的稳态可塑性
- 批准号:
BB/X014568/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
- 批准号:
EP/Z000297/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
PlastiRootS - Evaluation of complex Root traits towards PLASTIcity in barley under Salt stress for improving climate resilience and productivity
PlastiRootS - 评估盐胁迫下大麦可塑性的复杂根性状,以提高气候适应能力和生产力
- 批准号:
EP/Y030435/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Interactions between learning and non-learning plasticity in the beadlet sea anenome Actinia equina: A multidimensional reaction norm approach.
珠状海葵海葵中学习和非学习可塑性之间的相互作用:一种多维反应规范方法。
- 批准号:
BB/Y002474/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interrogating the extremes of skeletal muscle plasticity in vertebrates
探究脊椎动物骨骼肌可塑性的极限
- 批准号:
DP240102721 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects