Isoperimetric filling problems and the large scale geometry of metric spaces
等周填充问题和度量空间的大规模几何
基本信息
- 批准号:0956374
- 负责人:
- 金额:$ 9.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-02 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is located at the intersection of metric geometry and analysis on metric spaces. The principal aim of the project is to gain a deeper understanding of the large scale geometry of various classes of metric spaces through the study of higher-dimensional isoperimetric inequalities. The project's first and main part focuses on simply connected geodesic metric spaces of non-positive curvature in the sense of Alexandrov, called Hadamard spaces. In this setting, a particular goal is to establish connections between the behavior of higher-dimensional isoperimetric functions (and other filling invariants) and various notions of rank. If successful, the research will result in an answer to Gromov's conjecture on linear isoperimetric inequalities which asserts Euclidean behavior in the dimensions below and linear behavior in the dimensions above the Euclidean rank in a proper cocompact Hadamard space. The proposed approach relies on methods from geometric measure theory and analysis on metric spaces, in particular on the notion of metric currents, the theory of which has recently been developed by Ambrosio and Kirchheim. An important second part of the project will thus be to further develop the theory of metric currents, which provides a suitable notion of surfaces in a metric space and also gives powerful tools in the study of many other problems in geometric analysis, e.g. such involving energy minimization. Isoperimetric inequalities also play a fundamental role in geometric group theory. For finitely presented groups one-dimensional isoperimetric functions measure the complexity of the word problem and have been extensively studied over the past 15 years. The study of higher-dimensional isoperimetric functions, on the other hand, has only recently become a very active field of research. A last part of the project investigates filling problems in the context of nilpotent Lie groups.The study of isoperimetric problems has a long history. Not only has it inspired many mathematicians, but it has also led to many new theories in mathematics. In the most classical setting-known already to the Ancient Greeks-the isoperimetric inequality asserts that a closed curve in the plane encloses an area no larger than that of a disc of the same circumference. Higher-dimensional analogues are concerned with the question of how well a k-dimensional closed surface can be filled with a (k+1)-dimensional surface. Filling problems appear in many different fields of mathematics, including analysis, geometry, probability theory and group theory. The aim of the present project is to study the effects that curvature has on the isoperimetric filling problem. The investigation will in particular lead to a deeper understanding of the geometry of non-positively curved singular spaces. Such arise for example in the mathematical study of billiard trajectories. The project proposes to use methods from the field of geometric measure theory, dealing with the study of singular surfaces. This theory was to a large extent inspired by Plauteau's problem, which asks for the existence of a minimal surface (or a soap film) with prescribed boundary. Higher-dimensional analogues of this question were the starting point in the development of the theory of currents, which nowadays has many applications going far beyond Plateau's problem.
该研究处于度量几何与度量空间分析的交叉点。该项目的主要目的是通过研究高维等周不等式,更深入地了解各类度量空间的大尺度几何。该项目的第一部分和主要部分集中在Alexandrov意义上的非正曲率的单连通测地度量空间,称为Hadamard空间。在这种情况下,一个特定的目标是建立高维等周函数(和其他填充不变量)的行为和各种秩概念之间的联系。如果成功的话,这项研究将导致回答格罗莫夫猜想的线性等周不等式断言欧几里得行为的维度以下和线性行为的维度以上的欧几里得秩在一个适当的cocompact阿达玛空间。所提出的方法依赖于几何测量理论和度量空间的分析方法,特别是度量流的概念,其理论最近由Ambrosio和Kirchheim开发。因此,该项目的第二个重要部分将是进一步发展度量流理论,该理论提供了度量空间中曲面的适当概念,并在几何分析中的许多其他问题的研究中提供了强大的工具,例如涉及能量最小化的问题。等周不等式在几何群论中也起着重要的作用。一维等周函数度量了字问题的复杂性,在过去的15年里得到了广泛的研究。另一方面,高维等周函数的研究直到最近才成为一个非常活跃的研究领域。本计画的最后一部分是研究幂零李群中的填充问题。等周问题的研究有很长的历史。它不仅启发了许多数学家,而且还导致了许多新的数学理论。在最经典的设置-已知的古希腊-等周不等式断言,一个封闭的曲线在平面包围的面积不大于一个磁盘的相同周长。高维类似物关注的问题是一个k维闭曲面如何被一个(k+1)维曲面填充。填充问题出现在许多不同的数学领域,包括分析,几何,概率论和群论。本项目的目的是研究曲率对等周填充问题的影响。特别是调查将导致更深入地了解几何的非积极弯曲的奇异空间。例如,在台球轨迹的数学研究中出现了这种情况。该项目建议使用几何测量理论领域的方法,处理奇异曲面的研究。这一理论在很大程度上受到了普劳托问题的启发,普劳托问题要求存在一个具有指定边界的最小表面(或肥皂膜)。这个问题的高维类似物是电流理论发展的起点,电流理论现在有许多应用远远超出了高原问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Wenger其他文献
Rectifiability of flat chains in Banach spaces with coefficients in Z p
- DOI:
10.1007/s00209-010-0680-y - 发表时间:
2010-02-12 - 期刊:
- 影响因子:1.000
- 作者:
Luigi Ambrosio;Stefan Wenger - 通讯作者:
Stefan Wenger
Isoperimetric inequalities vs. upper curvature bounds
等周不等式与曲率上限
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stephan Stadler;Stefan Wenger - 通讯作者:
Stefan Wenger
Stefan Wenger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Wenger', 18)}}的其他基金
CAREER: Geometric inequalities, asymptotic geometry, and geometric measure theory
职业:几何不等式、渐近几何和几何测度论
- 批准号:
1056263 - 财政年份:2011
- 资助金额:
$ 9.76万 - 项目类别:
Continuing Grant
Isoperimetric filling problems and the large scale geometry of metric spaces
等周填充问题和度量空间的大规模几何
- 批准号:
0707009 - 财政年份:2007
- 资助金额:
$ 9.76万 - 项目类别:
Standard Grant
相似国自然基金
高维space-filling问题及其相关问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Filling问题的最优化原理及其求解方法研究
- 批准号:61502148
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
拉压应力状态下含充填断续节理岩体三维裂隙扩展及锚杆加固机理研究
- 批准号:40872203
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
- 批准号:
NE/Y005686/1 - 财政年份:2024
- 资助金额:
$ 9.76万 - 项目类别:
Research Grant
視線追従レンダリングに基づく周辺視野の色経験とfilling-inプロセスの解明
基于眼动追踪渲染的周边视觉色彩体验和填充过程的阐释
- 批准号:
24K15145 - 财政年份:2024
- 资助金额:
$ 9.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NextGen Structural Biology under Electrochemical Control: Filling in Missing Intermediates in Metalloenzyme Catalytic Cycles
电化学控制下的下一代结构生物学:填补金属酶催化循环中缺失的中间体
- 批准号:
BB/X002624/1 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Research Grant
Collaborative Research: Joining the Global Bryophyte and Lichen TCN: Filling Gaps from Hawaii, Asia, and Oceania
合作研究:加入全球苔藓植物和地衣 TCN:填补夏威夷、亚洲和大洋洲的空白
- 批准号:
2240481 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307573 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Standard Grant
Reducing commodity-driven forest and biodiversity loss by exploring and filling data gaps for due diligence
通过探索和填补尽职调查的数据空白,减少商品驱动的森林和生物多样性丧失
- 批准号:
NE/X016285/1 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Research Grant
Resources to Advance Pediatrics and HIV Prevention Science (RAPPS): Preclinical Gap- Filling Services
推进儿科和艾滋病毒预防科学 (RAPPS) 的资源:临床前填补服务空白
- 批准号:
10850753 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Analysis of low grain-filling mechanism and evaluation of its usefulness toward the development of new rice cultivar for whole crop silage
低灌浆机理分析及其对整株青贮水稻新品种开发的实用性评价
- 批准号:
23K05182 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reducing commodity-driven forest and biodiversity loss by exploring and filling data gaps for due diligence
通过探索和填补尽职调查的数据空白,减少商品驱动的森林和生物多样性丧失
- 批准号:
NE/X016277/1 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Research Grant
Collaborative Research: Joining the Global Bryophyte and Lichen TCN: Filling Gaps from Hawaii, Asia, and Oceania
合作研究:加入全球苔藓植物和地衣 TCN:填补夏威夷、亚洲和大洋洲的空白
- 批准号:
2240482 - 财政年份:2023
- 资助金额:
$ 9.76万 - 项目类别:
Standard Grant














{{item.name}}会员




