NextGen Structural Biology under Electrochemical Control: Filling in Missing Intermediates in Metalloenzyme Catalytic Cycles
电化学控制下的下一代结构生物学:填补金属酶催化循环中缺失的中间体
基本信息
- 批准号:BB/X002624/1
- 负责人:
- 金额:$ 73.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Chemical reactions critical for a net-zero, renewable-energy future are the production and oxidation of hydrogen gas as a clean, renewable fuel, and the efficient production of ammonia for fertiliser or as a clean hydrogen storage system. Nature has already solved these chemical challenges, in the form of microbial hydrogenase and nitrogenase enzymes, which comprise clusters of earth-abundant metals wrapped up in a protein framework to enable use of hydrogen as a fuel or production of ammonia from nitrogen in the air. In this project we develop and apply a set of research tools, which allow us to fill in gaps in understanding of how these enzymes work, providing insight that will feed into wider research efforts to establish viable clean energy technologies to address the urgent climate challenge. We use x-rays and neutrons to collect a combination of static images (akin to 'photographs') and dynamic 'movies' of these enzymes as they carry out key catalytic steps, in order to understand how they achieve the splitting of strong chemical bonds in hydrogen and nitrogen. This will provide important information to assist biologists to understand the enzymes, and to assist chemists to design new catalysts for energy technologies. X-rays are used routinely to provide images of the location of atoms in a complex enzyme molecule in the crystal state, where many molecules of the enzyme pack into an ordered array. Enzymes can perform their chemical reaction in the crystal and the last decade has seen exciting technical advances in synchrotron/laser x-ray sources and detectors that enable rapid collection of many x-ray 'images', offering possibilities of making 'movies' of how atoms move in enzymes as they function. However, such movies are only possible if all the enzymes in the crystal are held in the same initial state at the start of the reaction - equivalent to the challenge of aligning a team of unruly runners at the starting line before a race-and all react at the same time. This presents a second challenge, finding an appropriate trigger- equivalent to a starting gun used to begin a race - to start the reaction. Our previous work provides solutions to these challenges. Firstly, we have found how to use electrodes to apply an electrochemical potential to bring all the molecules into a uniform state - the same oxidation level- to start catalysis. Secondly, Ash has demonstrated light triggers can be applied to this uniform starting state to begin catalysis. During the project, we start by fine-tuning these control and trigger mechanisms, adapting them for the tiny crystals used in time-resolved x-ray methods. We then use electrochemical control to produce high quality static snapshots of each oxidation level of hydrogenase. We then apply the light triggers to initiate steps in catalysis, and record molecular movies of the enzyme in action. This will give the most detailed view ever achieved of hydrogenase actually working.Next, we address a limitation in x-ray structural images that it is very difficult to pinpoint the location of the tiny hydrogen atoms which are released as the enzyme splits hydrogen gas. For this we turn to neutron beams to show up the elusive hydrogen atoms. Using very large crystals of hydrogenase, we again apply electrochemical control to trap the enzyme molecules at a uniform oxidation level, before firing neutrons at them to show the exact positions of the hydrogen atoms that are so critical in hydrogenase catalysis. Finally, we turn to nitrogenase, showing that we can apply our electrochemical control and light triggers here too, demonstrating the broad applicability of our methods to different enzymes relevant to energy technologies. We aim to capture nitrogenase in action during binding, release or transformation of non-natural substrate molecules to better understand where and how nitrogen binds and is split.
对于净零,可再生能源未来至关重要的化学反应是氢气作为清洁,可再生燃料的生产和氧化,以及用于肥料或清洁储氢系统的氨的有效生产。大自然已经以微生物氢化酶和固氮酶的形式解决了这些化学挑战,这些酶包括包裹在蛋白质框架中的地球丰富的金属簇,以便能够使用氢作为燃料或从空气中的氮生产氨。在这个项目中,我们开发和应用了一套研究工具,使我们能够填补了解这些酶如何工作的空白,提供洞察力,将为更广泛的研究工作提供信息,以建立可行的清洁能源技术,以应对紧迫的气候挑战。我们使用X射线和中子来收集这些酶的静态图像(类似于“照片”)和动态“电影”的组合,因为它们执行关键的催化步骤,以了解它们如何实现氢和氮中强化学键的分裂。这将提供重要的信息,以帮助生物学家了解酶,并帮助化学家设计新的催化剂的能源技术。X射线通常用于提供晶体状态下复杂酶分子中原子位置的图像,其中许多酶分子排列成有序阵列。酶可以在晶体中进行化学反应,在过去的十年中,同步加速器/激光X射线源和探测器的技术进步令人兴奋,这些技术可以快速收集许多X射线“图像”,为制作酶中原子如何运动的“电影”提供了可能性。然而,只有当晶体中的所有酶在反应开始时都处于相同的初始状态时,这样的电影才有可能-相当于在比赛前将一队不守规矩的跑步者排在起跑线上的挑战-并且所有酶都同时反应。这提出了第二个挑战,找到合适的触发器--相当于用于开始比赛的发令枪--来启动反应。我们以前的工作为这些挑战提供了解决方案。首先,我们已经发现如何使用电极施加电化学电势,使所有分子进入统一状态-相同的氧化水平-开始催化。其次,Ash已经证明了光触发器可以应用于这种均匀的起始状态以开始开始催化。在项目期间,我们首先微调这些控制和触发机制,使其适用于时间分辨X射线方法中使用的微小晶体。然后,我们使用电化学控制,以产生高品质的静态快照的每个氧化水平的氢化酶。然后,我们应用光触发器启动催化步骤,并记录酶作用的分子电影。接下来,我们将讨论X射线结构图像的局限性,即很难精确定位酶分解氢气时释放的微小氢原子的位置。为此,我们转向中子束来显示难以捉摸的氢原子。使用非常大的氢化酶晶体,我们再次应用电化学控制将酶分子捕获在均匀的氧化水平,然后向它们发射中子以显示氢原子的确切位置,这在氢化酶催化中非常关键。最后,我们转向固氮酶,表明我们也可以在这里应用我们的电化学控制和光触发器,证明我们的方法对与能源技术相关的不同酶的广泛适用性。我们的目标是在非天然底物分子的结合,释放或转化过程中捕获固氮酶,以更好地了解氮在哪里以及如何结合和分裂。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing high-affinity, oxygen-insensitive [NiFe]-hydrogenases as biocatalysts for energy conversion.
- DOI:10.1042/bst20230120
- 发表时间:2023-10-31
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kylie Vincent其他文献
Kylie Vincent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kylie Vincent', 18)}}的其他基金
Single protein crystal spectroscopy and crystallography of hydrogenase under electrochemical control
电化学控制下氢化酶的单蛋白晶体光谱和晶体学
- 批准号:
BB/R018413/1 - 财政年份:2018
- 资助金额:
$ 73.59万 - 项目类别:
Research Grant
Mechanistic and Structural Insights into NO sensing by Iron-Sulfur Cluster Regulators
铁硫簇调节器对 NO 传感的机理和结构见解
- 批准号:
BB/P009697/1 - 财政年份:2017
- 资助金额:
$ 73.59万 - 项目类别:
Research Grant
New routes to driving enzyme-catalysed chemical synthesis using hydrogen gas
使用氢气驱动酶催化化学合成的新途径
- 批准号:
EP/N013514/1 - 财政年份:2016
- 资助金额:
$ 73.59万 - 项目类别:
Research Grant
INSPIRE: Robust Biocatalysis for Energy Solutions(2)
INSPIRE:用于能源解决方案的强大生物催化(2)
- 批准号:
EP/J015202/1 - 财政年份:2011
- 资助金额:
$ 73.59万 - 项目类别:
Research Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Combining structural biology and genetics to understand the function of a multi-gene family expanded in neglected human malaria parasites
结合结构生物学和遗传学来了解在被忽视的人类疟疾寄生虫中扩展的多基因家族的功能
- 批准号:
MR/Y012895/1 - 财政年份:2024
- 资助金额:
$ 73.59万 - 项目类别:
Research Grant
Conference: 2024 Workshop on Challenges and Opportunities in Neutrons in Structural Biology
会议:2024年结构生物学中子挑战与机遇研讨会
- 批准号:
2407094 - 财政年份:2024
- 资助金额:
$ 73.59万 - 项目类别:
Standard Grant
Structural biology of the hepatitis B virus entry and its inhibition
乙型肝炎病毒进入的结构生物学及其抑制
- 批准号:
23H02724 - 财政年份:2023
- 资助金额:
$ 73.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-BSF: Computational Methods for Shape Space Analysis in Structural Biology
NSF-BSF:结构生物学中形状空间分析的计算方法
- 批准号:
2309782 - 财政年份:2023
- 资助金额:
$ 73.59万 - 项目类别:
Continuing Grant
The physics and structural biology of supramolecular protein self-assembly in meiotic chromosome synapsis
减数分裂染色体突触中超分子蛋白自组装的物理和结构生物学
- 批准号:
2894984 - 财政年份:2023
- 资助金额:
$ 73.59万 - 项目类别:
Studentship
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 73.59万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structural systems biology of microenvironmental oxidative stress and synthetic biology intervention
微环境氧化应激的结构系统生物学与合成生物学干预
- 批准号:
10715112 - 财政年份:2023
- 资助金额:
$ 73.59万 - 项目类别:
Structural and Chemical Biology of Targeted Degraders of NSD2
NSD2 靶向降解剂的结构和化学生物学
- 批准号:
483396 - 财政年份:2023
- 资助金额:
$ 73.59万 - 项目类别:
Operating Grants
Developing a Structural Biology Driven Approach to Biofilm Control and Management
开发结构生物学驱动的生物膜控制和管理方法
- 批准号:
BB/Y513702/1 - 财政年份:2023
- 资助金额:
$ 73.59万 - 项目类别:
Training Grant