CAREER: Geometric inequalities, asymptotic geometry, and geometric measure theory

职业:几何不等式、渐近几何和几何测度论

基本信息

  • 批准号:
    1056263
  • 负责人:
  • 金额:
    $ 40.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-05-15 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

This project concerns the study of isoperimetric and related geometric inequalities in various settings. One of the principal goals of the project is to explore connections between the growth of isoperimetric functions and fine metric and measure theoretic properties of the asymptotic cones of the underlying space. A better understanding of these connections will in turn have applications to problems in various branches of geometry, analysis, and geometric group theory. The PI has already made contributions in this direction in the recent past. The project includes a significant educational component; its principal aim is to bring together groups of young researchers from different fields of expertise in geometry and analysis and to foster interaction between these groups through targeted activities. One of the activities the PI will organize is an annual Summer School for advanced graduate students and recent Ph.Ds on various topics of current research interest at the juncture of geometry, analysis, and geometric group theory, with all talks given by participants on pre-assigned articles.Isoperimetric problems have been studied since the time of the Ancient Greeks. In its simplest form, the isoperimetric problem asks which shape of a closed curve with a given length can cover the largest area on a plane. In modern mathematics, isoperimetric problems play an important role in many fields, notably in geometry, analysis, probability theory, and group theory. The present project aims at gaining a deeper understanding of the connections between isoperimetric problems and problems from other fields, such as for example large scale geometry, a field which has been influential in many branches of mathematics in recent years. Roughly speaking, large scale (or asymptotic) geometry is the study of geometric properties of objects "seen from far away". From this perspective, a dotted line for example is indistinguishable from a solid one.
本计画主要研究等周不等式及相关的几何不等式。该项目的主要目标之一是探索等周函数的增长和精细度量之间的联系,并测量基本空间的渐近锥的理论性质。更好地理解这些联系将反过来应用于几何、分析和几何群论的各个分支中的问题。不久前,PI已经在这方面做出了贡献。该项目包括一个重要的教育部分;其主要目标是将来自几何和分析不同专业领域的年轻研究人员聚集在一起,并通过有针对性的活动促进这些群体之间的互动。PI将组织的活动之一是为高级研究生和最近的博士生举办的年度暑期学校,涉及几何,分析和几何群论等当前研究兴趣的各种主题,所有演讲都由参与者根据预先指定的文章进行。等周问题自古希腊时代以来一直在研究。在其最简单的形式中,等周问题询问具有给定长度的闭合曲线的形状可以覆盖平面上的最大面积。在现代数学中,等周问题在许多领域中扮演着重要的角色,特别是在几何、分析、概率论和群论中。本项目旨在更深入地了解等周问题与其他领域问题之间的联系,例如大规模几何,近年来在数学的许多分支中都有影响力的领域。粗略地说,大尺度(或渐近)几何是研究“从远处看”的物体的几何性质。从这个角度来看,例如虚线与实线是无法区分的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Wenger其他文献

Rectifiability of flat chains in Banach spaces with coefficients in Z p
  • DOI:
    10.1007/s00209-010-0680-y
  • 发表时间:
    2010-02-12
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Luigi Ambrosio;Stefan Wenger
  • 通讯作者:
    Stefan Wenger
Isoperimetric inequalities vs. upper curvature bounds
等周不等式与曲率上限
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephan Stadler;Stefan Wenger
  • 通讯作者:
    Stefan Wenger

Stefan Wenger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefan Wenger', 18)}}的其他基金

Isoperimetric filling problems and the large scale geometry of metric spaces
等周填充问题和度量空间的大规模几何
  • 批准号:
    0956374
  • 财政年份:
    2009
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Standard Grant
Isoperimetric filling problems and the large scale geometry of metric spaces
等周填充问题和度量空间的大规模几何
  • 批准号:
    0707009
  • 财政年份:
    2007
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Continuing Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2022
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Discovery Grants Program - Individual
Functional, geometric and matrix inequalities and applications
函数、几何和矩阵不等式及其应用
  • 批准号:
    RGPIN-2021-03584
  • 财政年份:
    2022
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
  • 批准号:
    RGPIN-2018-04443
  • 财政年份:
    2022
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Discovery Grants Program - Individual
Quantitative Homotopy Theory and Geometric Inequalities
定量同伦理论和几何不等式
  • 批准号:
    RGPIN-2018-04523
  • 财政年份:
    2022
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2021
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Discovery Grants Program - Individual
Functional, geometric and matrix inequalities and applications
函数、几何和矩阵不等式及其应用
  • 批准号:
    DGECR-2021-00395
  • 财政年份:
    2021
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Discovery Launch Supplement
Convex Body Shape Recovery via Geometric Measures and Inequalities
通过几何测量和不等式恢复凸体形状
  • 批准号:
    2132330
  • 财政年份:
    2021
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Standard Grant
Black Holes, Geometric Inequalities, and Partial Differential Equations
黑洞、几何不等式和偏微分方程
  • 批准号:
    2104229
  • 财政年份:
    2021
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Standard Grant
Stability of Functional and Geometric Inequalities and Applications
函数和几何不等式的稳定性及其应用
  • 批准号:
    2200886
  • 财政年份:
    2021
  • 资助金额:
    $ 40.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了