Collaborative Research: Automating the Large-Scale Measurement of Insect Behavior
协作研究:自动化大规模昆虫行为测量
基本信息
- 批准号:0960618
- 负责人:
- 金额:$ 78.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Georgia Institute of Technology and Arizona State University are awarded grants to develop an integrated approach to automating measurements of insect behavior from video records. The study of insect behavior plays a fundamental role in biology, but progress is limited by the rate at which data can be gathered. Researchers have relied largely on direct observation or time-consuming manual annotation of video records. This project will create an automated solution that combines theory, algorithms, software modules, and databases of behavior measurements. These tools will be widely applicable to studies of animal behavior, but development will focus on the particularly rich and challenging problems offered by ants, where multiple interacting animals must be simultaneously tracked. Current multi-tracking technologies are limited in their ability to deal with the huge degree of target interaction in this context, including significant periods of occlusion of one target by another. This project will generate a novel approach that applies the graph-cut optimization method to video object segmentation. This method will be able to identify which portions of the video correspond to distinct targets even when they overlap. Accurate target segmentation will also facilitate more accurate adaptation to changes in appearance due to lighting or other environmental effects. The project will also develop novel behavior recognition methods that infer behavior from target configuration and appearance. Unlike traditional methods this approach will not rely on the state of the tracker and thus will avoid the compounding of recognition errors by tracking errors.Two cross-cutting themes inform this project. The first is a focus on algorithms and methods compatible with modular software tools, thus allowing biologists to develop a customized solution to a wide range of sensing tasks. The second theme is the utilization of state-of-the-art ultra-high resolution imaging sensors to obtain more information about ant behavior and identity than is currently possible. These capabilities will enable insect biologists to frame and answer research questions that exceed the limited data collection capabilities of current methods. Algorithms and software modules will be widely disseminated, to maximize their power to transform biology in a more general setting. For more information visit the project website at http://www.kinetrack.org/
格鲁吉亚理工学院和亚利桑那州立大学获得了赠款,以开发一种综合方法,从视频记录中自动测量昆虫行为。昆虫行为的研究在生物学中起着基础性的作用,但进展受到数据收集速度的限制。研究人员在很大程度上依赖于直接观察或耗时的手动注释视频记录。该项目将创建一个自动化的解决方案,结合理论,算法,软件模块和行为测量数据库。这些工具将广泛应用于动物行为的研究,但开发将集中在蚂蚁提供的特别丰富和具有挑战性的问题上,其中必须同时跟踪多个相互作用的动物。当前的多跟踪技术在处理这种情况下的巨大程度的目标相互作用(包括一个目标被另一个目标遮挡的显著时段)的能力方面是有限的。本项目将产生一种新的方法,将图切割优化方法应用于视频对象分割。这种方法将能够识别视频的哪些部分对应于不同的目标,即使它们重叠。准确的目标分割还将有助于更准确地适应由于照明或其他环境影响而引起的外观变化。该项目还将开发新的行为识别方法,从目标配置和外观推断行为。与传统方法不同,这种方法不依赖于跟踪器的状态,从而避免了识别错误与跟踪错误的复合。首先是专注于与模块化软件工具兼容的算法和方法,从而使生物学家能够为广泛的传感任务开发定制的解决方案。第二个主题是利用最先进的超高分辨率成像传感器,以获得更多的信息,蚂蚁的行为和身份比目前可能的。这些能力将使昆虫生物学家能够构建和回答超出当前方法有限数据收集能力的研究问题。算法和软件模块将被广泛传播,以最大限度地发挥其在更普遍的环境中改造生物学的能力。欲了解更多信息,请访问项目网站http://www.kinetrack.org/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Rehg其他文献
James Rehg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Rehg', 18)}}的其他基金
CRI: CI-EN: Collaborative Research: mResearch: A platform for Reproducible and Extensible Mobile Sensor Big Data Research
CRI:CI-EN:协作研究:mResearch:可复制和可扩展的移动传感器大数据研究平台
- 批准号:
1823201 - 财政年份:2018
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
I-CORPS: First Person Visual Analytics
I-CORPS:第一人称视觉分析
- 批准号:
1600474 - 财政年份:2016
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Comp Cog: Collaborative Research on the Development of Visual Object Recognition
Comp Cog:视觉对象识别发展的协作研究
- 批准号:
1524565 - 财政年份:2015
- 资助金额:
$ 78.49万 - 项目类别:
Continuing Grant
RI: Small: A Compositional Approach to Video Segmentation
RI:小:视频分割的组合方法
- 批准号:
1320348 - 财政年份:2013
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
RI: Small: Temporal Causality For Video Event Analysis
RI:小:视频事件分析的时间因果关系
- 批准号:
1016772 - 财政年份:2010
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: Sino-USA Summer School in Vision, Learning, Pattern Recognition VLPR 2010
合作研究:中美视觉、学习、模式识别暑期学校 VLPR 2010
- 批准号:
1037845 - 财政年份:2010
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: Computational Behavioral Science: Modeling, Analysis, and Visualization of Social and Communicative Behavior
合作研究:计算行为科学:社交和交流行为的建模、分析和可视化
- 批准号:
1029679 - 财政年份:2010
- 资助金额:
$ 78.49万 - 项目类别:
Continuing Grant
Collaborative Research:Creating Dynamic Social Network Models from Sensor Data
协作研究:从传感器数据创建动态社交网络模型
- 批准号:
0433012 - 财政年份:2004
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
CAREER: Motion Capture from Movies: Video-Based Tracking and Modeling of Human Motion
职业:电影动作捕捉:基于视频的人体动作跟踪和建模
- 批准号:
0133779 - 财政年份:2002
- 资助金额:
$ 78.49万 - 项目类别:
Continuing Grant
ITR: Analysis of Complex Audio-Visual Events Using Spatially Distributed Sensors
ITR:使用空间分布式传感器分析复杂的视听事件
- 批准号:
0205507 - 财政年份:2002
- 资助金额:
$ 78.49万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
- 批准号:
2319421 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Continuing Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318548 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318550 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
- 批准号:
2319422 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333326 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
- 批准号:
2318549 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Automating and Synthesizing Parallel Zero-Knowledge Protocols
合作研究:FMitF:第一轨:自动化和综合并行零知识协议
- 批准号:
2318975 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Automating and Synthesizing Parallel Zero-Knowledge Protocols
合作研究:FMitF:第一轨:自动化和综合并行零知识协议
- 批准号:
2318974 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant