Econometric Shrinkage and Model Averaging
计量经济学收缩和模型平均
基本信息
- 批准号:0961258
- 负责人:
- 金额:$ 26.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the course of empirical research, economists typically estimate multiple models. This is partially because there is uncertainty about correct model specification, and is partially because of the desire to avoid over-parameterization. One might ask the question: Which of these models should be used? This is the question of model selection, which has been deeply explored in econometrics and statistics.In contemporary work, model selection has evolved into model averaging. Rather than selecting one model among a set of models, the entire ensemble can be averaged. Averaging reduces estimation variance. Averaging is quite popular in forecasting--newspapers and other outlets will commonly report the average forecast across a set of established forecasting models. This is one example of model averaging, but it extends to all areas of statistical and econometric estimation.In the context of model averaging, the critical question is how to select the weights. In the forecasting example listed above, the convention is to use equal weights. But this is a convention without justification. Instead, what is the best method to select model weights?This research is part of the attempt to answer this question.This research expands the application of shrinkage in econometric estimation. When there are two nested models, model averaging is equivalent with shrinkage estimation. The PI will show that we can apply the modern theory of statistical shrinkage to parametric econometric estimators. The result is that we can construct shrinkage estimators which are more efficient than conventional estimators. This research also extends the theory of shrinkage to the general model averaging case where the number of models exceeds two. The Pi will develop non-Bayesian model averaging methods for econometric estimators. Model averaging methods are growing in popularity in applied econometrics. The methods proposed in this research project will have broad empirical application. It can be expected that the theory and methods uncovered by this research will find productive use by applied economists, statisticians, and other social scientists both in academics and the public sector.
在实证研究过程中,经济学家通常会估计多个模型。这部分是因为正确的模型规格存在不确定性,部分是因为希望避免过度参数化。有人可能会问:应该使用哪种模式?这就是模型选择的问题,在计量经济学和统计学中已经得到了深入的探讨,在当代的研究中,模型选择已经演变为模型平均。不是在一组模型中选择一个模型,而是可以对整个集合进行平均。求平均值可减少估计方差。平均法在预测中非常流行-报纸和其他媒体通常会报告一组既定预测模型的平均预测。这是模型平均的一个例子,但它扩展到统计和计量经济学估计的所有领域。在模型平均的背景下,关键问题是如何选择权重。在上面列出的预测示例中,惯例是使用相等的权重。但这是一个没有正当理由的惯例。相反,选择模型权重的最佳方法是什么?本研究是试图回答这一问题的一部分,拓展了收缩率在计量经济学估计中的应用。 当存在两个嵌套模型时,模型平均值与收缩估计值等效。 PI将表明,我们可以将现代统计收缩理论应用于参数计量经济学估计。其结果是,我们可以构造收缩估计,这是更有效的比传统的估计。本研究亦将收缩理论延伸至模型数目超过两个的一般模型平均情形。 PI将为计量经济学估计量开发非贝叶斯模型平均方法。 模型平均法在应用计量经济学中越来越受欢迎。 本研究所提出的方法将具有广泛的实证应用。 可以预期,本研究所揭示的理论和方法将为学术界和公共部门的应用经济学家、统计学家和其他社会科学家所利用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Hansen其他文献
'All of You are One': The Social Vision of Gal 3.28, 1 Cor 12.13 and Col 3.11
“你们都是一体”:Gal 3.28、Cor 1 12.13 和 Col 3.11 的社会愿景
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Bruce Hansen - 通讯作者:
Bruce Hansen
Identifying Observed Factors in FAVAR Models: A Bayesian Variable Selection Approach
识别 FAVAR 模型中的观察因素:贝叶斯变量选择方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Robert MacDonald;Jonathan Roth;Bruce Hansen;Julian Martinez;G. Rocheteau;Michael Choi - 通讯作者:
Michael Choi
Effect of topical medication on the nasomaxillary skin-fold microbiome in French bulldogs.
局部药物对法国斗牛犬鼻上颌皮褶微生物组的影响。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Alissa Rexo;Bruce Hansen;Mats Clarsund;Janina A. Krumbeck;Joseph Bernstein - 通讯作者:
Joseph Bernstein
Working Papers Working Papers Working Papers Working Papers Cointegration and Long-horizon Forecasting Cointegration and Long-horizon Forecasting
工作论文 工作论文 工作论文 协整和长期预测 协整和长期预测
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Peter F. Christoffersen;F. X. Diebold;F. X. Diebold;Dave Dejong;Robert F. Engle;Clive Granger;Bruce Hansen;Dennis Hoffman;Laura Kodres;Jim Stock;Ruey Tsay;Ken Wallis;Mark Watson;Chuck Whiteman;Mike Wickens;Tao Zha - 通讯作者:
Tao Zha
Bruce Hansen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Hansen', 18)}}的其他基金
Collaborative Research: RUI: Uncovering the Neural Dynamics of Scene Categorization through Electroencephalography, Machine Learning, and Neuromodulation
合作研究:RUI:通过脑电图、机器学习和神经调节揭示场景分类的神经动力学
- 批准号:
1736394 - 财政年份:2017
- 资助金额:
$ 26.98万 - 项目类别:
Standard Grant
Shrinkage for Vector Autoregressions and Impulse Response Estimation
矢量自回归和脉冲响应估计的收缩
- 批准号:
1656123 - 财政年份:2017
- 资助金额:
$ 26.98万 - 项目类别:
Continuing Grant
MRI: Acquisition of an Electroencephalography (EEG) System for Integrated Cognitive, Perceptual, and Social Neuroscience Research at Colgate University
MRI:科尔盖特大学采购脑电图 (EEG) 系统用于综合认知、知觉和社会神经科学研究
- 批准号:
1337614 - 财政年份:2013
- 资助金额:
$ 26.98万 - 项目类别:
Standard Grant
Efficient Econometric Shrinkage and Forecasting
高效的计量经济学收缩和预测
- 批准号:
1258858 - 财政年份:2013
- 资助金额:
$ 26.98万 - 项目类别:
Standard Grant
Semiparametric Bootstrap Methods for Time Series
时间序列的半参数引导方法
- 批准号:
0241152 - 财政年份:2003
- 资助金额:
$ 26.98万 - 项目类别:
Continuing Grant
Bootstrapping in Autoregressions: Threshold Estimation and Inference
自回归中的引导:阈值估计和推理
- 批准号:
9807111 - 财政年份:1998
- 资助金额:
$ 26.98万 - 项目类别:
Continuing Grant
Testing for Unit Roots and Cointegration Using Covariates
使用协变量测试单位根和协整
- 批准号:
9412339 - 财政年份:1994
- 资助金额:
$ 26.98万 - 项目类别:
Continuing Grant
Inference When a Parameter Is Not Identified Under the Null
参数在 Null 下未识别时的推理
- 批准号:
9022176 - 财政年份:1991
- 资助金额:
$ 26.98万 - 项目类别:
Standard Grant
相似海外基金
Inactivation of Escherichia coli using high hydrostatic pressure from viewpoints of cell shrinkage and expansion
从细胞收缩和扩张的角度利用高静水压灭活大肠杆菌
- 批准号:
23K05105 - 财政年份:2023
- 资助金额:
$ 26.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel retail shrinkage/theft prevention approach for scan-&-go self checkout
用于扫描的新型零售防缩/防盗方法
- 批准号:
10055849 - 财政年份:2023
- 资助金额:
$ 26.98万 - 项目类别:
Collaborative R&D
Eco-friendly low shrinkage concrete integrating upcycled textile waste
结合升级回收纺织废料的环保低收缩混凝土
- 批准号:
DE230101221 - 财政年份:2023
- 资助金额:
$ 26.98万 - 项目类别:
Discovery Early Career Researcher Award
Modeling of Shrinkage Behavior of Polymers
聚合物收缩行为的建模
- 批准号:
23H01142 - 财政年份:2023
- 资助金额:
$ 26.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Penalty, non-penalty shrinkage and ensemble methods for low and high dimensional data
低维和高维数据的惩罚、非惩罚收缩和集成方法
- 批准号:
RGPIN-2019-04101 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Discovery Grants Program - Individual
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
- 批准号:
573853-2022 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
University Undergraduate Student Research Awards
Adaptive Dependent Data Models via Graph-Informed Shrinkage and Sparsity
通过图通知收缩和稀疏性的自适应相关数据模型
- 批准号:
2214726 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Standard Grant
Regulatory mechanism of adipose shrinkage on chronic inflammation
脂肪收缩对慢性炎症的调节机制
- 批准号:
22K19433 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Balancing Tourism and Conservation in Era of Climate Change and Shrinkage: Land Use Maps as a Boundary Object
在气候变化和收缩时代平衡旅游和保护:土地利用图作为边界对象
- 批准号:
22H03852 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ensemble subspace, penalty, pretest, and shrinkage strategies for high dimensional data
高维数据的集成子空间、惩罚、预测试和收缩策略
- 批准号:
RGPIN-2017-05228 - 财政年份:2022
- 资助金额:
$ 26.98万 - 项目类别:
Discovery Grants Program - Individual