Efficient Econometric Shrinkage and Forecasting

高效的计量经济学收缩和预测

基本信息

  • 批准号:
    1258858
  • 负责人:
  • 金额:
    $ 26.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

In the course of empirical research or policy analysis, economists typically estimate sophisticated high-dimensional models. There are a set of standard estimation methods developed for these purposes, and these estimators share the property that they have approximate normal distributions. However, it is well known that normally-distributed estimators can be improved (have reduced risk) if they are shrunk towards a pre-specified point in the parameter space (a restriction or simpler model of interest). This suggests that common econometric estimators can be improved by shrinkage towards restricted estimators.This proposal suggests that this insight can be made rigorous. The PI develops general shrinkage estimators whose risk (the statistical expected loss) is smaller than conventional estimators. These new estimators are efficient, meaning that their risk is the lowest possible among all feasible estimators. This project proposes efficient methods for both parametric models (those defined by a finite set of parameters) and semiparametric models (when some features of the model are treated as nonparametric or high dimensional).Closely related to the question of efficient estimation is the technique of model selection and combination. These issues are particularly relevant for economic forecasting, where forecast combination is routinely applied, yet little theoretical guidance exists for selection of the combination weights. This proposal focuses on developing rigorous criteria for selection of combination weights in the context of multi-step forecasts. Multi-step forecasts are critical for policy analysis, yet have particular technical challenges. This project investigates methods for direct forecasts, iterated forecasts, and forecast intervals. The econometric methods developed in this proposal are expected to have broad application in applied economic analysis, policy analysis, and economic forecasting. It is expected that the theory and methods uncovered by this research will find productive use by applied economists, statisticians, and other social scientists both in academics and the public sector.
在实证研究或政策分析过程中,经济学家通常会估计复杂的高维模型。有一套为这些目的开发的标准估计方法,这些估计器共享它们具有近似正态分布的属性。然而,众所周知,如果正态分布估计量缩小到参数空间中的一个预先指定的点(一个约束或更简单的感兴趣模型),则它们可以得到改进(降低风险)。这表明,通常的计量经济学估计量可以通过向受限估计收缩来改进。这一建议表明,这一观点可以变得严格。PI发展了一般的收缩估计器,其风险(统计预期损失)比传统估计器小。这些新的估计器是有效的,这意味着它们的风险是所有可行估计器中可能最低的。该项目提出了参数模型(由有限参数集定义的模型)和半参数模型(当模型的某些特征被视为非参数或高维)的有效方法。与有效估计问题密切相关的是模型选择和组合技术。这些问题与经济预测特别相关,在经济预测中,预测组合是常规应用,但组合权重的选择几乎没有理论指导。这项建议侧重于在多步预测的背景下制定选择组合权重的严格标准。多步预测对于政策分析至关重要,但也面临着特殊的技术挑战。本项目研究直接预报、迭代预报和预报间隔的方法。本建议中发展的计量经济学方法有望在应用经济分析、政策分析和经济预测中得到广泛应用。预计这项研究发现的理论和方法将在学术界和公共部门得到应用经济学家、统计学家和其他社会科学家的富有成效的使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruce Hansen其他文献

'All of You are One': The Social Vision of Gal 3.28, 1 Cor 12.13 and Col 3.11
“你们都是一体”:Gal 3.28、Cor 1 12.13 和 Col 3.11 的社会愿景
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bruce Hansen
  • 通讯作者:
    Bruce Hansen
Identifying Observed Factors in FAVAR Models: A Bayesian Variable Selection Approach
识别 FAVAR 模型中的观察因素:贝叶斯变量选择方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert MacDonald;Jonathan Roth;Bruce Hansen;Julian Martinez;G. Rocheteau;Michael Choi
  • 通讯作者:
    Michael Choi
Effect of topical medication on the nasomaxillary skin-fold microbiome in French bulldogs.
局部药物对法国斗牛犬鼻上颌皮褶微生物组的影响。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alissa Rexo;Bruce Hansen;Mats Clarsund;Janina A. Krumbeck;Joseph Bernstein
  • 通讯作者:
    Joseph Bernstein
Working Papers Working Papers Working Papers Working Papers Cointegration and Long-horizon Forecasting Cointegration and Long-horizon Forecasting
工作论文 工作论文 工作论文 协整和长期预测 协整和长期预测
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter F. Christoffersen;F. X. Diebold;F. X. Diebold;Dave Dejong;Robert F. Engle;Clive Granger;Bruce Hansen;Dennis Hoffman;Laura Kodres;Jim Stock;Ruey Tsay;Ken Wallis;Mark Watson;Chuck Whiteman;Mike Wickens;Tao Zha
  • 通讯作者:
    Tao Zha

Bruce Hansen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruce Hansen', 18)}}的其他基金

Collaborative Research: RUI: Uncovering the Neural Dynamics of Scene Categorization through Electroencephalography, Machine Learning, and Neuromodulation
合作研究:RUI:通过脑电图、机器学习和神经调节揭示场景分类的神经动力学
  • 批准号:
    1736394
  • 财政年份:
    2017
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
Shrinkage for Vector Autoregressions and Impulse Response Estimation
矢量自回归和脉冲响应估计的收缩
  • 批准号:
    1656123
  • 财政年份:
    2017
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of an Electroencephalography (EEG) System for Integrated Cognitive, Perceptual, and Social Neuroscience Research at Colgate University
MRI:科尔盖特大学采购脑电图 (EEG) 系统用于综合认知、知觉和社会神经科学研究
  • 批准号:
    1337614
  • 财政年份:
    2013
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
Econometric Shrinkage and Model Averaging
计量经济学收缩和模型平均
  • 批准号:
    0961258
  • 财政年份:
    2010
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
GMM Model Averaging
GMM 模型平均
  • 批准号:
    0550908
  • 财政年份:
    2006
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
Semiparametric Bootstrap Methods for Time Series
时间序列的半参数引导方法
  • 批准号:
    0241152
  • 财政年份:
    2003
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
Bootstrapping in Autoregressions: Threshold Estimation and Inference
自回归中的引导:阈值估计和推理
  • 批准号:
    9807111
  • 财政年份:
    1998
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
Testing for Unit Roots and Cointegration Using Covariates
使用协变量测试单位根和协整
  • 批准号:
    9412339
  • 财政年份:
    1994
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Continuing Grant
Inference When a Parameter Is Not Identified Under the Null
参数在 Null 下未识别时的推理
  • 批准号:
    9022176
  • 财政年份:
    1991
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant
Student Science Training Program
学生科学训练计划
  • 批准号:
    8024955
  • 财政年份:
    1981
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Standard Grant

相似海外基金

Econometric Analysis of Dynamic Games with Limited Information
有限信息动态博弈的计量经济学分析
  • 批准号:
    ES/X011186/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Research Grant
Econometric Analyses on the Structural Changes in Food Demand
粮食需求结构变化的计量经济学分析
  • 批准号:
    23H00806
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spatial Econometric Analysis on regional economies and decentralization in Indonesia based on legal mapping method and satellite night time light data
基于法定制图方法和卫星夜间灯光数据的印度尼西亚区域经济与权力下放空间计量分析
  • 批准号:
    23H03617
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Econometric modelling to study dynamic health behaviours at an individual, household, birth cohort a local authority level.
计量经济学模型,用于研究个人、家庭、出生队列和地方当局级别的动态健康行为。
  • 批准号:
    MR/T032472/2
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Fellowship
Theory and applications of Econometric models with mixed Data sampling
混合数据抽样计量经济模型的理论与应用
  • 批准号:
    23K01342
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Econometric analysis of technology adoption and utilization in dairy farming
奶牛养殖技术采用和利用的计量经济学分析
  • 批准号:
    23K05408
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of Feed-in-Tariff on Energy Consumption, Onsite Generation and CO2 Emissions: an Econometric Analysis of Japanese Plants
上网电价补贴对能源消耗、现场发电和二氧化碳排放的影响:日本工厂的计量经济分析
  • 批准号:
    23KJ2023
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The construction of new uncertainty indicators and theoretical and econometric analysis of their impact on financial markets and the macroeconomy
新不确定性指标的构建及其对金融市场和宏观经济影响的理论和计量分析
  • 批准号:
    23H00048
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Econometric Study for the Development of Sustainalbe Tourism after COVID-19
COVID-19后可持续旅游业发展的计量经济学研究
  • 批准号:
    23K11649
  • 财政年份:
    2023
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Renewable Penetration, Integration Costs and the Roles of the Power Grids: A Spatial Econometric Analysis for Prefectures in Japan
可再生能源渗透率、整合成本和电网的作用:日本各县的空间计量经济分析
  • 批准号:
    22K13387
  • 财政年份:
    2022
  • 资助金额:
    $ 26.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了