Collaborative Research: Life in the Dead Zone: Microbial respiration, production, diversity and gene expression in seasonally anoxic estuarine waters
合作研究:死亡区的生命:季节性缺氧河口水域的微生物呼吸、生产、多样性和基因表达
基本信息
- 批准号:0961920
- 负责人:
- 金额:$ 83.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Every summer in many estuaries and coastal margins, eutrophication elevated phytoplankton production drives rapid bacterial respiration creating hypoxic and anoxic bottom waters. These so-called "dead zones" exclude fish, kill benthic organisms, and eliminate habitat. Despite their popular name, anoxic/hypoxic zones are not really dead, but rather are populated with living and very active microbial communities. In fact, bacterial production in anoxic waters can exceed that in overlying oxic waters due, in part, to reduced grazing and increased cell size and abundance. Once oxygen is depleted, microbial respiration undergoes a succession of redox reactions with decreasing energy yield as terminal electron acceptors are depleted (e.g., O2, NO3-, Mn (IV), Fe (III), and SO42-). This combination of high production and reduced growth efficiency creates a condition in which respiration may be very high, making anoxic zones significant sinks for organic matter and key sites for nutrient cycling. Previous research documented respiratory succession in Chesapeake Bay bottom waters based on redox chemistry measurements. Heterotrophic bacterial production was very high at some stages of this succession, suggesting elevated respiration. Also, the phylogenetic composition of bacterioplankton communities in anoxic waters was similar to oxic surface waters for nearly half the summer, only changing after the appearance of H2S. This suggests that typical aerobic estuarine bacteria are able to shift to anaerobic metabolisms and continue to dominate. Most of what is known about microbial respiration and community composition in anoxic water comes from studies of permanently anoxic systems like the Black Sea and Cariaco Basin. By comparison, very little is known about what is a much more common and more dynamic marine environment - seasonally anoxic estuarine waters. This project will conduct a 3-year integrated study to advance the quantitative and mechanistic understanding of biogeochemical cycling in one of the largest seasonal estuarine anoxic zones in the USA. The PIs hypothesize that: 1) Dominant sub-pycnocline respiratory processes undergo a succession from aerobic respiration to nitrate respiration and metal reduction to sulfate reduction; 2) Bacterial growth efficiency decreases with this respiratory succession, but bacterial production remains high, resulting in very high carbon respiration rates; 3) Bacterial community composition changes little during respiratory succession until sulfate respiration dominates (i.e., the sulfide threshold), but gene expression closely tracks changes in redox conditions in order to support the most energetic respiratory processes. The PIs will address these hypotheses by quantifying carbon respiration rates using several techniques including carbon respiration rate; quantifying bacterial production, biomass and growth efficiency; and characterizing succession in the composition and respiratory gene expression patterns of microbial communities in water column and sediments during each stage of respiratory succession. This project will integrate biogeochemical, biological, and genomic data to explain how biogeochemistry influences, and is influenced by, microbial respiration, production, diversity, and gene expression.Broader Impacts. The project will provide (1) reliable measurements of production and respiration in anoxic/hypoxic waters, (2) techniques applicable to other ecosystems, and (3) ecological insight for predicting future changes with ongoing restoration efforts in anoxia-impacted estuaries. These measurements will be useful for calibrating biogeochemical models and for estimating carbon budgets. Two graduate students and one postdoctoral scientist will be trained in several state-of-the-art geochemical and molecular biology techniques. Two teachers will be engaged to work on this project and to participate in the seven-week Environmental Science Education Partnership (ESEP) Teacher Research Fellowship Program (www.esep.umces.edu) at UMCES Horn Point Laboratory. New discoveries will be incorporated into graduate-level courses entitled Aquatic Microbial Ecology, Biological Oceanography, and Environmental Geochemistry. Nucleic acid sequences will be deposited in online repositories including GenBank.
每年夏天,在许多河口和沿海边缘,富营养化导致浮游植物产量增加,从而推动细菌快速呼吸,形成缺氧和缺氧的底层沃茨。这些所谓的“死亡区”排除了鱼类,杀死了底栖生物,并消除了栖息地。尽管它们的名字很流行,但缺氧/低氧区并不是真正的死亡,而是充满了活的和非常活跃的微生物群落。事实上,缺氧沃茨中的细菌产量可以超过上覆的好氧沃茨中的细菌产量,部分原因是放牧减少以及细胞大小和丰度增加。一旦氧耗尽,微生物呼吸经历一系列氧化还原反应,随着末端电子受体耗尽(例如,O2、NO3-、Mn(IV)、Fe(III)和SO42-)。这种高产量和低生长效率的结合创造了一种呼吸作用可能非常高的条件,使缺氧区成为有机物质的重要汇点和营养循环的关键场所。 以前的研究记录呼吸演替在切萨皮克湾底部沃茨氧化还原化学测量的基础上。异养细菌的生产是非常高的,在某些阶段的这一演替,这表明呼吸升高。此外,在缺氧沃茨的浮游细菌群落的系统发育组成是类似的,近一半的夏季,只有改变后的H2S的外观好氧表面沃茨。这表明典型的好氧河口细菌能够转向无氧代谢并继续占据主导地位。 大多数关于缺氧水中微生物呼吸和群落组成的知识来自对黑海和Cariaco盆地等永久缺氧系统的研究。相比之下,人们对更常见和更动态的海洋环境--季节性缺氧的河口沃茨-知之甚少。该项目将进行一项为期3年的综合研究,以促进对美国最大的季节性河口缺氧区之一的生物地球化学循环的定量和机制的理解。 PI假设:1)优势亚密度跃层呼吸过程经历从好氧呼吸到硝酸盐呼吸和金属还原到硫酸盐还原的演替; 2)细菌生长效率随着这种呼吸演替而降低,但细菌产量仍然很高,导致非常高的碳呼吸速率; 3)细菌群落组成在呼吸演替期间变化很小,直到硫酸盐呼吸占主导地位(即,硫化物阈值),但基因表达密切跟踪氧化还原条件的变化,以支持最具活力的呼吸过程。 研究人员将通过使用几种技术(包括碳呼吸率)量化碳呼吸率来解决这些假设;量化细菌产量,生物量和生长效率;以及在呼吸演替的每个阶段描述水柱和沉积物中微生物群落的组成和呼吸基因表达模式的演替。该项目将整合微生物地球化学、生物学和基因组数据,以解释微生物地球化学如何影响微生物呼吸、生产、多样性和基因表达,以及微生物如何受微生物呼吸、生产、多样性和基因表达的影响。该项目将提供(1)缺氧/缺氧沃茨中生产和呼吸的可靠测量,(2)适用于其他生态系统的技术,以及(3)预测未来变化的生态洞察力,并在缺氧影响的河口进行持续的恢复工作。这些测量将有助于校准地球化学模型和估计碳预算。两名研究生和一名博士后科学家将接受几种最先进的地球化学和分子生物学技术的培训。两名教师将参与这个项目的工作,并参加为期七周的环境科学教育伙伴关系(ESEP)教师研究奖学金计划(www.esep.umces.edu)在UMCES霍恩点实验室。新的发现将被纳入研究生课程,题为水生微生物生态学,生物海洋学和环境地球化学。核酸序列将存放在包括基因库在内的在线储存库中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Cornwell其他文献
Jeffrey Cornwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Cornwell', 18)}}的其他基金
Collaborative Research: Across the Salinity Transition -- Changes in N and P Biogeochemistry Along an Estuarine Salinity Gradient
合作研究:跨越盐度转变——沿河口盐度梯度的氮和磷生物地球化学变化
- 批准号:
0212636 - 财政年份:2002
- 资助金额:
$ 83.68万 - 项目类别:
Continuing Grant
Collaborative Research: Carbon and Electron Acceptor Cycling in Lake and Estuarine Sediments During Early Diagenesis
合作研究:早期成岩作用期间湖泊和河口沉积物中的碳和电子受体循环
- 批准号:
9612292 - 财政年份:1996
- 资助金额:
$ 83.68万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338394 - 财政年份:2024
- 资助金额:
$ 83.68万 - 项目类别:
Continuing Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348641 - 财政年份:2024
- 资助金额:
$ 83.68万 - 项目类别:
Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
- 批准号:
2338395 - 财政年份:2024
- 资助金额:
$ 83.68万 - 项目类别:
Continuing Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
- 批准号:
2348642 - 财政年份:2024
- 资助金额:
$ 83.68万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 83.68万 - 项目类别:
Continuing Grant
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318862 - 财政年份:2023
- 资助金额:
$ 83.68万 - 项目类别:
Standard Grant
Collaborative Research: Bioarchaeology, Osteoimmunology, and Ecoimmunology: Linking Inflammation, Life History Tradeoffs, and Biocultural Change
合作研究:生物考古学、骨免疫学和生态免疫学:将炎症、生活史权衡和生物文化变革联系起来
- 批准号:
2316573 - 财政年份:2023
- 资助金额:
$ 83.68万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Households' Immediate Protective Actions and Trade-Off Processes Between Property Security and Life Safety in Response to 2022 Hurricane Ian
快速/协作研究:应对 2022 年伊恩飓风时家庭的立即保护行动以及财产安全和生命安全之间的权衡过程
- 批准号:
2303578 - 财政年份:2023
- 资助金额:
$ 83.68万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Small: RUI: Drawing from Life in Extended Reality: Advancing and Teaching Cross-Reality User Interfaces for Observational 3D Sketching
合作研究:HCC:小型:RUI:从扩展现实中的生活中汲取灵感:推进和教授用于观察 3D 草图绘制的跨现实用户界面
- 批准号:
2326998 - 财政年份:2023
- 资助金额:
$ 83.68万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type 2: Delphi: Life-time aware design frameworks for sustainable edge devices
合作研究:DESC:类型 2:Delphi:可持续边缘设备的生命周期感知设计框架
- 批准号:
2324861 - 财政年份:2023
- 资助金额:
$ 83.68万 - 项目类别:
Standard Grant