NeTS: Medium: Collaborative Research: A Comprehensive Approach for Data Quality and Provenance in Sensor Networks
NeTS:媒介:协作研究:传感器网络中数据质量和来源的综合方法
基本信息
- 批准号:0964350
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensor networks enable real-time gathering of large amounts of data that can be mined and analyzed for taking critical actions. As such, sensor networks are a key component of decision-making infrastructures. A critical issue in this context is the trustworthiness of the data being collected. Data integrity and quality decide the trustworthiness of data. Data integrity can be undermined not only because of errors by users, measurement devices and applications, but also because of malicious subjects who may inject inaccurate data with the goal of deceiving the data users. A fundamental tradeoff exists between data quality and the cost to gather and protect this data, e.g., in terms of sensor node energy. This project focuses on a multi-faceted solution to the problem of assessing integrity of data streams in sensor networks, taking into account cost and energy constraints. Key elements of the solution are: (a) a cyclic framework supporting the assessment of sensor data trustworthiness based on provenance, and sensor trustworthiness based on data that sensors provide; (b) strategies for continuously updating trust scores of sensor data and nodes; (c) a game-theoretic model to analyze and mitigate the risks due to active adversaries that try to undermine data integrity; (d) protocols for sensor network sleep/wake scheduling and routing that balance the data quality and energy efficiency tradeoff. The project also includes the development of tools for assessing data trustworthiness, and experimental evaluation of the system performance. The research has impact on healthcare, homeland security, and applications in several other domains.
传感器网络能够实时收集大量数据,这些数据可以被挖掘和分析,以便采取关键行动。因此,传感器网络是决策基础设施的关键组成部分。这方面的一个关键问题是所收集数据的可信度。数据的完整性和质量决定了数据的可信度。 数据完整性可能会受到破坏,不仅是因为用户、测量设备和应用程序的错误,还因为恶意主体可能会注入不准确的数据,以欺骗数据用户。在数据质量与收集和保护该数据的成本之间存在基本的权衡,例如,在传感器节点能量方面。该项目的重点是一个多方面的解决方案,在传感器网络中的数据流的完整性评估的问题,考虑到成本和能源的限制。该解决方案的关键要素是:(a)支持基于出处的传感器数据可信度评估和基于传感器提供的数据的传感器可信度评估的循环框架;(B)用于持续更新传感器数据和节点的信任分数的策略;(c)用于分析和减轻由于试图破坏数据完整性的活跃对手而引起的风险的博弈论模型;(d)用于传感器网络睡眠/唤醒调度和路由的协议,其平衡数据质量和能量效率折衷。该项目还包括开发用于评估数据可信度的工具,以及对系统性能进行实验评估。 该研究对医疗保健,国土安全和其他几个领域的应用产生了影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murat Kantarcioglu其他文献
Analysis of heuristic based access pattern obfuscation
基于启发式的访问模式混淆分析
- DOI:
10.4108/icst.collaboratecom.2013.254199 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Huseyin Ulusoy;Murat Kantarcioglu;B. Thuraisingham;E. Cankaya;Erman Pattuk - 通讯作者:
Erman Pattuk
BitcoinHeist: Topological Data Analysis for Ransomware Detection on the Bitcoin Blockchain
BitcoinHeist:比特币区块链上勒索软件检测的拓扑数据分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
C. Akcora;Yitao Li;Y. Gel;Murat Kantarcioglu - 通讯作者:
Murat Kantarcioglu
Enforcing Honesty in Assured Information Sharing Within a Distributed System
在分布式系统内确保信息共享中加强诚实性
- DOI:
10.1007/978-3-540-73538-0_10 - 发表时间:
2007 - 期刊:
- 影响因子:37.3
- 作者:
Ryan Layfield;Murat Kantarcioglu;B. Thuraisingham - 通讯作者:
B. Thuraisingham
Incentive and Trust Issues in Assured Information Sharing
有保证的信息共享中的激励和信任问题
- DOI:
10.1007/978-3-642-03354-4_10 - 发表时间:
2008 - 期刊:
- 影响因子:7.3
- 作者:
Ryan Layfield;Murat Kantarcioglu;B. Thuraisingham - 通讯作者:
B. Thuraisingham
Service Bus
服务总线
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
R. Topor;K. Salem;Amarnath Gupta;K. Goda;J. Gehrke;N. Palmer;Mohamed Sharaf;Alexandros Labrinidis;J. Roddick;Ariel Fuxman;Renée J. Miller;Wang;Anastasios Kementsietsidis;Philippe Bonnet;D. Shasha;R. Peikert;Bertram Ludäscher;S. Bowers;T. McPhillips;Harald Naumann;K. Voruganti;J. Domingo;Ben Carterette;Panagiotis G. Ipeirotis;M. Arenas;Y. Manolopoulos;Y. Theodoridis;V. Tsotras;B. Carminati;Jan Jurjens;E. Fernández;Murat Kantarcioglu;Jaideep Vaidya;I. Ray;A. Vakali;Cristina Sirangelo;E. Pitoura;H. Gupta;S. Chaudhuri;G. Weikum;U. Leser;D. Embley;Fausto Giunchiglia;P. Shvaiko;Mikalai Yatskevich;Edward Y. Chang;C. Parent;S. Spaccapietra;E. Zimányi;G. Anadiotis;S. Kotoulas;R. Siebes;G. Antoniou;D. Plexousakis;J. Bailey;François Bry;Tim Furche;Sebastian Schaffert;David Martin;Gregory D. Speegle;K. Ramamritham;Panos K. Chrysanthis;K. Sattler;S. Bressan;S. Abiteboul;Dan Suciu;G. Dobbie;T. Ling;Sugato Basu;R. Govindan;Michael H. Böhlen;C. Jensen;Jianyong Wang;K. Vidyasankar;A. Chan;Serge Mankovski;S. Elnikety;P. Valduriez;Yannis Velegrakis;M. Nascimento;Michael Huggett;A. Frank;Yanchun Zhang;Guandong Xu;R. Snodgrass;A. Fekete;M. Herzog;Konstantinos Morfonios;Y. Ioannidis;E. Wohlstadter;M. Matera;F. Schwagereit;Steffen Staab;K. Fraser;Jingren Zhou;M. Mokbel;W. Aref;M. Moro;Markus Schneider;Panos Kalnis;G. Ghinita;M. Goodchild;Shashi Shekhar;James M. Kang;Vijay Gandhi;N. Mamoulis;Betsy George;M. Scholl;A. Voisard;R. H. Güting;Yufei Tao;Dimitris Papadias;P. Revesz;G. Kollios;E. Frentzos;Apostolos N. Papadopoulos;B. Thalheim;J. Pehcevski;Benjamin Piwowarski;S. Theodoridis;K. Koutroumbas;George Karabatis;D. Chamberlin;P. Bernstein;Michael H. Böhlen;J. Gamper;Ping Li;K. Subieta;S. Harizopoulos;Ethan Zhang;Yi Zhang;T. Johnson;H. Jacobsen;S. Fienberg;Jiashun Jin;R. Sion;C. Paice;Nikos Hardavellas;Ippokratis Pandis;E. Rasmussen;H. Yoshida;G. Graefe;B. Reiner;K. Hahn;K. Wada;T. Risch;Jiawei Han;Bolin Ding;Lukasz Golab;M. Stonebraker;Bibudh Lahiri;Srikanta Tirthapura;Erik Vee;Yanif Ahmad;U. Çetintemel;Mitch Cherniack;S. Zdonik;M. Consens;M. Lalmas;R. Baeza;D. Hiemstra;Peer Krögerand;Arthur Zimek;Nick Craswell;C. Leung;M. Crochemore;T. Lecroq;A. Shoshani;Jimmy J. Lin;Hw Yu;D. Lomet;H. Hinterberger;Ninghui Li;Phillip B. Gibbons;Mouna Kacimi;Thomas Neumann - 通讯作者:
Thomas Neumann
Murat Kantarcioglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murat Kantarcioglu', 18)}}的其他基金
CICI: UCSS: Blockchain Based Assured Open Scientific Data Sharing and Governance
CICI:UCSS:基于区块链的有保障的开放科学数据共享和治理
- 批准号:
2115094 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: Collaborative: A Privacy Risk Assessment Framework for Person-Level Data Sharing During Pandemics
RAPID:协作:大流行期间个人级数据共享的隐私风险评估框架
- 批准号:
2029661 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ATD: Topological Data Analysis for Threat Detection
ATD:用于威胁检测的拓扑数据分析
- 批准号:
1925346 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
MRI: Development of An Instrument for Secure Cyber Physical Systems Analytics
MRI:开发安全网络物理系统分析仪器
- 批准号:
1828467 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CICI: Data Provenance: Collaborative Research: CY-DIR Cyber-Provenance Infrastructure for Sensor-Based Data-Intensive Research
CICI:数据来源:协作研究:CY-DIR 用于基于传感器的数据密集型研究的网络来源基础设施
- 批准号:
1547324 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
I-Corps: Secure Document Management in the Cloud
I-Corps:云中的安全文档管理
- 批准号:
1339941 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative Proposal: Policy Compliant Integration of Linked Data
TWC:媒介:协作提案:关联数据的政策合规集成
- 批准号:
1228198 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
TC: Large: Collaborative Research: Privacy-Enhanced Secure Data Provenance
TC:大型:协作研究:隐私增强的安全数据来源
- 批准号:
1111529 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
TC: Small: Collaborative: Protocols for Privacy-Preserving Scalable Record Matching and Ontology Alignment
TC:小型:协作:隐私保护可扩展记录匹配和本体对齐协议
- 批准号:
1016343 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312834 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312448 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312674 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312710 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant