CSR: Medium: Collaborative Research: Scaling the Implicitly Parallel Programming Model with Lifelong Thread Extraction and Dynamic Adaptation

CSR:中:协作研究:通过终身线程提取和动态适应扩展隐式并行编程模型

基本信息

项目摘要

The microprocessor industry has moved toward multicore designs to leverage increasing transistor counts in the face of physical and micro-architectural limitations. Unfortunately, providing multiple cores does not translate into performance for most applications. Rather than pushing all the burden onto programmers, this project advocates the use of the implicitly parallel programming model to eliminate the laborious and error-prone process of explicit parallel programming. Implicit parallel programming leverages sequential languages to facilitate shorter development and debug cycles, and relies on automatic tools, both static compilers and run-time systems, to identify parallelism and customize it to the target platform. Implicit parallelism can be systematically extracted using: (1) decoupled softwarepipelining, a technique to extract the pipeline parallelism found in many sequential applications; (2) low-frequency and high-confidence speculation to overcome limitations of memory dependence analysis; (3) whole-program scope for parallelization to eliminate analysis boundaries; (4) simple extensions to the sequential programming model that give the programmer the power to refine the meaning of a program; (5) dynamic adaptation to ensure efficiency is maintained across changing environments. This project is developing the set of technologies to realize an implicitly parallel programming system with scalable, lifelong thread extraction and dynamic adaptation. At the broader level, the implicitly parallel programming approach will free programmers to consider the problems they are trying to solve, rather than forcing them to overcome the processor industry's failure to continue to scale performance. This approach will keep computers accessible, helping computing to have the same increasingly positive impact on other fields.
微处理器行业已经转向多核设计,以在面对物理和微架构限制时利用不断增加的晶体管数量。 不幸的是,对于大多数应用程序来说,提供多个内核并不能转化为性能。这个项目提倡使用隐式并行编程模型来消除显式并行编程的费力和容易出错的过程,而不是将所有的负担都推给程序员。 隐式并行编程利用顺序语言来缩短开发和调试周期,并依赖于静态编译器和运行时系统等自动工具来识别并行性并将其定制到目标平台。 隐式并行性可以通过以下方法系统地提取:(1)解耦软件流水,一种提取在许多顺序应用中发现的流水线并行性的技术;(2)低频和高置信度的推测,以克服存储器依赖分析的局限性;(3)整个程序范围的并行化,以消除分析边界;(4)对顺序编程模型的简单扩展,使程序员能够细化程序的含义;(5)动态适应,以确保在不断变化的环境中保持效率。该项目正在开发一套技术,以实现一个隐式并行编程系统,可扩展的,终身线程提取和动态适应。 在更广泛的层面上,隐式并行编程方法将使程序员能够自由地考虑他们试图解决的问题,而不是迫使他们克服处理器行业无法继续扩展性能的问题。 这种方法将保持计算机的可访问性,帮助计算对其他领域产生同样日益积极的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Mahlke其他文献

Using Graphics Processing Units in an LTE Base Station
Analyzing the Next Generation Software Defined Radio for Future Architectures

Scott Mahlke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Mahlke', 18)}}的其他基金

I-Corps: Mistos-Enabling Write-once Run-everywhere High Performance Software
I-Corps:Mistos 支持一次写入、到处运行的高性能软件
  • 批准号:
    1462365
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Scalable Approximate Computing for Data Parallel Applications
XPS:完整:CCA:数据并行应用程序的可扩展近似计算
  • 批准号:
    1438996
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SHF: Small: Scaling the Compute Efficiency of General-Purpose Processors
SHF:小型:扩展通用处理器的计算效率
  • 批准号:
    1217917
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SHF: Small: An Adaptive Architecture Fabric for Constructing Resilient Multicore Systems
SHF:小型:用于构建弹性多核系统的自适应架构结构
  • 批准号:
    0916689
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPA-CPL-T: Collaborative Research: Revisiting the Sequential Programming Model for Multicore Systems
CPA-CPL-T:协作研究:重新审视多核系统的顺序编程模型
  • 批准号:
    0811065
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CSR--EHS: Collaborative Research: Hardware/Software Co-Exploration of Scalable Software Defined Radio Platforms
CSR--EHS:协作研究:可扩展软件定义无线电平台的硬件/软件共同探索
  • 批准号:
    0615261
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Compiler-Directed Synthesis of Application Specific Processors
职业:专用处理器的编译器导向综合
  • 批准号:
    0347411
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
  • 批准号:
    2312206
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
  • 批准号:
    2312276
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2312689
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2401244
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
  • 批准号:
    2312207
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
  • 批准号:
    2312760
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Core: Medium: Scaling Unix/Linux Shell Programs
协作研究:CSR:核心:中:扩展 Unix/Linux Shell 程序
  • 批准号:
    2312346
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
  • 批准号:
    2312397
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
  • 批准号:
    2312396
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
  • 批准号:
    2312761
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了