SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism

SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离

基本信息

  • 批准号:
    0964520
  • 负责人:
  • 金额:
    $ 51.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Expressing parallel computations over complex shared-memory data structures has always been a vexing issue in parallel programming. On one hand, popular task-based programming models do not provide first-class abstractions for isolation and locality. On the other, Actor-based programming naturally captures locality but is unsuitable for computations on large shared data structures. The present project partially bridges the gap between these two styles of parallelism through Chorus, a new programming model for parallel computations over unstructured, continually changing shared-memory data structures. The key abstraction of Chorus is an object assembly: a local, isolated region in the heap equipped with a thread of control. Assemblies can imperatively modify themselves, merge with other assemblies, and split into smaller assemblies?through these operations over assemblies, Chorus captures unpredictable, dynamic changes to parallelism. This makes Chorus an ideal programming model for many irregular data-parallel applications (e.g., meshing, clustering), which exhibit fine-grained data-parallelism in typical executions but no parallelism in the worst case, and whose parallelization remains an open and difficult challenge. The predicted outcomes of the project include new insights into the semantic foundations of Chorus and new language constructs integrating Chorus with existing abstractions for asynchronous task creation, directed synchronization, and locality. On the system-building end, the project will integrate Chorus with the Habanero Java parallel programming language, and implement a compiler and runtime for the resultant language. The performance and programmability of this language will be thoroughly evaluated using benchmarks largely consisting of emerging irregular workloads.
在复杂的共享内存数据结构上表示并行计算一直是并行编程中的一个棘手问题。一方面,流行的基于任务的编程模型不提供隔离和局部性的第一类抽象。另一方面,基于Actor的编程自然地捕获局部性,但不适合大型共享数据结构上的计算。目前的项目部分桥梁之间的差距这两种风格的并行通过合唱团,一个新的编程模型,并行计算的非结构化,不断变化的共享内存数据结构。Chorus的关键抽象是一个对象组装:堆中的一个局部的、隔离的区域,配备了一个控制线程。程序集是否可以强制修改自身、与其他程序集合并以及拆分为更小的程序集?通过对程序集的这些操作,Chorus捕获了不可预测的、动态的并行性变化。这使得Chorus成为许多不规则数据并行应用程序的理想编程模型(例如,网格化、集群化),其在典型执行中表现出细粒度的数据并行性,但在最坏情况下没有并行性,并且其并行化仍然是开放且困难的挑战。该项目的预期成果包括对Chorus语义基础的新见解,以及将Chorus与异步任务创建、定向同步和局部性的现有抽象相集成的新语言结构。在系统构建端,该项目将把Chorus与Habanero Java并行编程语言集成,并为结果语言实现编译器和运行时。该语言的性能和可编程性将使用主要由新兴的不规则工作负载组成的基准进行彻底评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vivek Sarkar其他文献

Compilation techniques for parallel systems
并行系统的编译技术
  • DOI:
    10.1016/s0167-8191(99)00086-1
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajiv Gupta;S. Pande;K. Psarris;Vivek Sarkar
  • 通讯作者:
    Vivek Sarkar
Common Subexpression Convergence: A New Code Optimization for SIMT Processors
公共子表达式收敛:SIMT 处理器的新代码优化
  • DOI:
    10.1007/978-3-030-72789-5_5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Damani;Vivek Sarkar
  • 通讯作者:
    Vivek Sarkar
BMS-CnC: Bounded Memory Scheduling of Dynamic Task Graphs
BMS-CnC:动态任务图的有限内存调度
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dragos Sbirlea;Vivek Sarkar
  • 通讯作者:
    Vivek Sarkar
Enabling Multi-threading in Heterogeneous Quantum-Classical Programming Models
在异构量子经典编程模型中启用多线程
Dynamic Determinacy Race Detection for Task Parallelism with Futures
用于 Future 任务并行的动态确定性竞争检测
  • DOI:
    10.1007/978-3-319-46982-9_23
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    R. Surendran;Vivek Sarkar
  • 通讯作者:
    Vivek Sarkar

Vivek Sarkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vivek Sarkar', 18)}}的其他基金

Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference
协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台
  • 批准号:
    2029004
  • 财政年份:
    2020
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Heterogeneous Migrating Threads for Post-Moore Computing
SPX:协作研究:后摩尔计算的可扩展异构迁移线程
  • 批准号:
    1822919
  • 财政年份:
    2018
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
  • 批准号:
    1818643
  • 财政年份:
    2017
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
  • 批准号:
    1629459
  • 财政年份:
    2016
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
CCF: SHF: Medium: Collaborative: A Static and Dynamic Verification Framework for Parallel Programming
CCF:SHF:媒介:协作:并行编程的静态和动态验证框架
  • 批准号:
    1302570
  • 财政年份:
    2013
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Continuing Grant
Travel Support for the Conference on Architectural Support for Programming Languages and Operating Systems
编程语言和操作系统架构支持会议的差旅支持
  • 批准号:
    1338429
  • 财政年份:
    2013
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Programming Models and Storage System for High Performance Computation with Many-Core Processors
合作研究:众核处理器高性能计算的编程模型和存储系统
  • 批准号:
    0938018
  • 财政年份:
    2009
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Programming Models, Compilers, and Runtimes for High-End Computing on Manycore Processors
协作研究:众核处理器上高端计算的编程模型、编译器和运行时
  • 批准号:
    0833166
  • 财政年份:
    2008
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
  • 批准号:
    2313024
  • 财政年份:
    2023
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了