SHF: Medium: Collaborative Research: Chorus: Dynamic Isolation in Shared-Memory Parallelism

SHF:媒介:协作研究:Chorus:共享内存并行中的动态隔离

基本信息

  • 批准号:
    0964520
  • 负责人:
  • 金额:
    $ 51.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Expressing parallel computations over complex shared-memory data structures has always been a vexing issue in parallel programming. On one hand, popular task-based programming models do not provide first-class abstractions for isolation and locality. On the other, Actor-based programming naturally captures locality but is unsuitable for computations on large shared data structures. The present project partially bridges the gap between these two styles of parallelism through Chorus, a new programming model for parallel computations over unstructured, continually changing shared-memory data structures. The key abstraction of Chorus is an object assembly: a local, isolated region in the heap equipped with a thread of control. Assemblies can imperatively modify themselves, merge with other assemblies, and split into smaller assemblies?through these operations over assemblies, Chorus captures unpredictable, dynamic changes to parallelism. This makes Chorus an ideal programming model for many irregular data-parallel applications (e.g., meshing, clustering), which exhibit fine-grained data-parallelism in typical executions but no parallelism in the worst case, and whose parallelization remains an open and difficult challenge. The predicted outcomes of the project include new insights into the semantic foundations of Chorus and new language constructs integrating Chorus with existing abstractions for asynchronous task creation, directed synchronization, and locality. On the system-building end, the project will integrate Chorus with the Habanero Java parallel programming language, and implement a compiler and runtime for the resultant language. The performance and programmability of this language will be thoroughly evaluated using benchmarks largely consisting of emerging irregular workloads.
在复杂的共享内存数据结构上表达并行计算在并行编程中一直是一个令人沮丧的问题。一方面,流行的基于任务的编程模型不能为隔离和区域提供一流的抽象。另一方面,基于演员的编程自然会捕获本地性,但不适合对大型共享数据结构进行计算。本项目部分通过合唱来部分弥合了这两种并行性之间的差距,这是一种新的编程模型,用于对非结构化的,不断变化的共享记忆数据结构进行并行计算。合唱的关键抽象是一个对象组件:堆中的局部隔离区域,配备了一个控制线。组件可以迫切地修改自己,与其他组件合并,并分成较小的组件?通过对组件的这些操作,合唱会捕获对并行性的不可预测的动态变化。这使得合唱成为许多不规则数据并行应用(例如,网格划分,聚类)的理想编程模型,它们在典型的执行中表现出细粒度的数据并行性,但在最坏的情况下没有并行性,其并行化仍然是一个开放而困难的挑战。该项目的预测结果包括对合唱的语义基础和新语言构造的新见解,将合唱与现有的抽象集成为异步任务创建,定向同步和局部性。在系统构建端,该项目将将合唱与Habanero Java并行编程语言集成,并实施由此产生的语言的编译器和运行时。该语言的性能和可编程性将使用主要包括不规则的工作负载组成的基准进行彻底评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vivek Sarkar其他文献

Transitive joins: a sound and efficient online deadlock-avoidance policy
传递连接:健全高效的在线避免死锁策略
Cost-driven thread coarsening for GPU kernels
GPU 内核的成本驱动线程粗化
Heterogeneous work-stealing across CPU and DSP cores
跨 CPU 和 DSP 内核的异构工作窃取
HabaneroUPC++: a Compiler-free PGAS Library
HabaneroUPC:无需编译器的 PGAS 库
Load Balancing Prioritized Tasks via Work-Stealing
通过工作窃取实现负载平衡优先任务

Vivek Sarkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vivek Sarkar', 18)}}的其他基金

Collaborative Research: PPoSS: Planning: Integrated Scalable Platform for Privacy-aware Collaborative Learning and Inference
协作研究:PPoSS:规划:用于隐私意识协作学习和推理的集成可扩展平台
  • 批准号:
    2029004
  • 财政年份:
    2020
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Heterogeneous Migrating Threads for Post-Moore Computing
SPX:协作研究:后摩尔计算的可扩展异构迁移线程
  • 批准号:
    1822919
  • 财政年份:
    2018
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
  • 批准号:
    1818643
  • 财政年份:
    2017
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
  • 批准号:
    1629459
  • 财政年份:
    2016
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Travel Support for the Conference on Architectural Support for Programming Languages and Operating Systems
编程语言和操作系统架构支持会议的差旅支持
  • 批准号:
    1338429
  • 财政年份:
    2013
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
CCF: SHF: Medium: Collaborative: A Static and Dynamic Verification Framework for Parallel Programming
CCF:SHF:媒介:协作:并行编程的静态和动态验证框架
  • 批准号:
    1302570
  • 财政年份:
    2013
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Programming Models and Storage System for High Performance Computation with Many-Core Processors
合作研究:众核处理器高性能计算的编程模型和存储系统
  • 批准号:
    0938018
  • 财政年份:
    2009
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Programming Models, Compilers, and Runtimes for High-End Computing on Manycore Processors
协作研究:众核处理器上高端计算的编程模型、编译器和运行时
  • 批准号:
    0833166
  • 财政年份:
    2008
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 51.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了