III: Medium: Collaborative Research: Data Mining and Cleaning for Medical Data Warehouses
III:媒介:协作研究:医疗数据仓库的数据挖掘和清理
基本信息
- 批准号:0964526
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A clinical data warehouse (CDW) is a repository that aggregates medical patient data from many different sources: billing records, electronic medical records including structured data (e.g., codes for diagnoses, procedures, vital signs, etc.), semi-structured reports and free-text dictations. A key benefit of maintaining a CDW lies in its ability to provide the raw data that are needed for large-scale study of real-world health care -- for example, finding a previously unknown association between a pain killer (e.g., Vioxx) and heart disease. Unfortunately, CDWs are riddled with systematic errors that make it difficult to answer even the simplest questions (such as "What fraction of female outpatients have breast cancer?") with any accuracy.This project focuses on statistical models and learning algorithms for quantifying and correcting errors in CDW records. For example, the project is developing semi-supervised learning methods that use the structured data present in electronic medical records (patient age, weight, medications, billing codes, etc.) in order to quantify the likelihood of error that is associated with the diagnosis codes present in the record (for example, being able to state "There is a 0.2 probability that the correct code was migraine instead of the listed headache"). The project will also develop methods that attempt to control for confounding variables present in the records, in order to remove systematic biases from the data.These models and learning algorithms will allow CDW users to manage and monitor the uncertainty and error in the data. This in turn will allow fundamentally new types of analysis to be undertaken, which will result in the discovery of actionable medical knowledge that saves both lives and money. To make the models and algorithms accessible to medical professionals who may lack computational or statistical background, they will be added to an open-source release of the widely-used I2B2 CDW software.The project is a collaboration between the Computer Science Department at Rice University and the School of Biomedical informatics at the University of Texas Health Science Center at Houston. All project results will be made available online (http://www.cs.rice.edu/~cmj4/CDW.htm).
临床数据仓库(CDW)是一个储存库,它聚集了来自许多不同来源的医疗患者数据:账单记录、包括结构化数据的电子医疗记录(例如,用于诊断、程序、生命体征等的代码),半结构化报告和自由文本听写。维护CDW的一个关键好处在于它能够提供对现实世界医疗保健进行大规模研究所需的原始数据-例如,发现止痛药(例如,万络)和心脏病。不幸的是,CDW充满了系统性错误,即使是最简单的问题也很难回答(比如“女性门诊患者中有多少人患有乳腺癌?该项目的重点是用于量化和纠正CDW记录中错误的统计模型和学习算法。例如,该项目正在开发半监督学习方法,该方法使用电子医疗记录中的结构化数据(患者年龄,体重,药物,账单代码等)。以便量化与记录中存在的诊断代码相关联的错误的可能性(例如,能够陈述“正确的代码是偏头痛而不是列出的头痛的概率为0.2”)。该项目还将开发试图控制记录中存在的混杂变量的方法,以消除数据中的系统性偏差。这些模型和学习算法将允许CDW用户管理和监控数据中的不确定性和错误。 这反过来又将允许进行全新类型的分析,从而发现可操作的医学知识,从而挽救生命和金钱。 为了使那些缺乏计算或统计背景的医学专业人士能够使用这些模型和算法,它们将被添加到广泛使用的I2 B2 CDW软件的开源版本中。该项目是莱斯大学计算机科学系和德克萨斯大学休斯顿健康科学中心生物医学信息学院的合作项目。 所有项目成果都将在网上公布(http://www.cs.rice.edu/cncmj4/CDW.htm)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Jermaine其他文献
Exploring phylogenetic hypotheses via Gibbs sampling on evolutionary networks
通过进化网络上的吉布斯采样探索系统发育假设
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Yun Yu;Christopher Jermaine;Luay K. Nakhleh - 通讯作者:
Luay K. Nakhleh
The Latent Community Model for Detecting Sybil Attacks in Social Networks
用于检测社交网络中女巫攻击的潜在社区模型
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Zhuhua Cai;Christopher Jermaine - 通讯作者:
Christopher Jermaine
Maintaining very large random samples using the geometric file
- DOI:
10.1007/s00778-007-0048-z - 发表时间:
2007-05-11 - 期刊:
- 影响因子:3.800
- 作者:
Abhijit Pol;Christopher Jermaine;Subramanian Arumugam - 通讯作者:
Subramanian Arumugam
Christopher Jermaine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Jermaine', 18)}}的其他基金
Collaborative Research: SHF: Medium: Semantics-Aware Neural Models of Code
合作研究:SHF:媒介:代码的语义感知神经模型
- 批准号:
2212557 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RPEP: III: celtSTEM Research Collaborative: Catapulting MSI Faculty and Students into Computational Research.
合作研究:CISE-MSI:RPEP:III:celtSTEM 研究合作:将 MSI 教师和学生推向计算研究。
- 批准号:
2131294 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Applying Relational Database Design Principles to Machine Learning System Design
三:小:将关系数据库设计原理应用于机器学习系统设计
- 批准号:
2008240 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918651 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
MLWiNS: Wireless On-the-Edge Training of Deep Networks Using Independent Subnets
MLWiNS:使用独立子网的深度网络无线边缘训练
- 批准号:
2003137 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Small: Declarative Recursive Computation on a Database System
III:小型:数据库系统上的声明式递归计算
- 批准号:
1910803 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
ABI Innovation: Algorithms and Models for Distributed Computation of Bayesian Phylogenetics
ABI Innovation:贝叶斯系统发育分布式计算算法和模型
- 批准号:
1355998 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
III: Medium: SimSQL: A Database System Supporting Implementation and Execution of Distributed Machine Learning Codes
III:媒介:SimSQL:支持分布式机器学习代码实现和执行的数据库系统
- 批准号:
1409543 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
III-COR-Medium: Design and Implementation of the DBO Database System
III-COR-Medium:DBO数据库系统的设计与实现
- 批准号:
1007062 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Small: The MCDB Database System for Managing and Modeling Uncertainty
小:用于管理和建模不确定性的 MCDB 数据库系统
- 批准号:
0915315 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant