MLWiNS: Wireless On-the-Edge Training of Deep Networks Using Independent Subnets
MLWiNS:使用独立子网的深度网络无线边缘训练
基本信息
- 批准号:2003137
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neural networks (NN) have led to many recent successes in machine learning (ML). However, this success comes at a prohibitive cost: to obtain better ML models, larger and larger NNs need to be trained and deployed. This is a problem for mobile ML applications, where model training and inference need to be carried out in a timely fashion on a computation-/communication-light, and energy-limited platform. Such applications must run on handheld devices or drones and edge infrastructure and introduce new challenges: the heterogeneity of edge networks, the unreliability of the mobile devices, the computational and energy restrictions on such devices, and the communication bottlenecks in wireless networks. This project will address these challenges by investigating a new paradigm for computation- and communication-light, energy-limited distributed NN learning. Success in this project will produce fundamental ideas and tools that will make mobile distributed learning practical. Further, the project will generate courses and open-education resources that can attract diverse groups of students. The specific idea investigated is a new class of distributed NN training algorithms, called independent subnetwork training (IST). IST decomposes a NN into a set of independent subnetworks. Each of those subnetworks is trained at a different device, for one or more backpropagation steps, before a synchronization step. Updated subnetworks are sent from edge-devices to the parameter server for reassembly into the original NN, before the next round of decomposition and local training. Because the subnetworks share no parameters, synchronization requires no aggregation—it is just an exchange of parameters. Moreover, each of the subnetworks is a fully operational classifier by itself; no synchronization pipelines between subnetworks are required. Key benefits of the proposed IST are that: i) IST assigns fewer training parameters to each mobile node per iteration, significantly reducing the communication overhead, and ii) each device trains a much smaller model, resulting in less computational costs and better energy consumption. Thus, there is good reason to expect that IST will scale much better than classic training algorithms for mobile applications. The project will investigate how to incorporate/extend IST to various NN architectures, develop new theories that explain the efficiency of IST, and unify theory with practice by proposing hardware-level system implementations that scale up and out for mobile applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经网络(NN)最近在机器学习(ML)方面取得了许多成功。然而,这种成功的代价是高昂的:为了获得更好的ML模型,需要训练和部署越来越大的NN。这对于移动的ML应用来说是一个问题,其中模型训练和推理需要在计算/通信轻和能量有限的平台上及时进行。这些应用程序必须在手持设备或无人机和边缘基础设施上运行,并引入新的挑战:边缘网络的异构性,移动的设备的不可靠性,这些设备上的计算和能源限制以及无线网络中的通信瓶颈。该项目将通过研究一种新的计算和通信轻型,能量有限的分布式NN学习范式来解决这些挑战。这个项目的成功将产生使移动的分布式学习实用的基本思想和工具。此外,该项目还将提供课程和开放教育资源,吸引不同群体的学生。研究的具体思想是一类新的分布式NN训练算法,称为独立子网络训练(IST)。IST将NN分解为一组独立的子网络。在同步步骤之前,针对一个或多个反向传播步骤,在不同的设备处训练这些子网络中的每一个。更新后的子网络从边缘设备发送到参数服务器,以便在下一轮分解和局部训练之前重新组装成原始NN。因为子网之间没有共享参数,所以同步不需要聚合--它只是交换参数。此外,每个子网络本身就是一个完全可操作的分类器;子网络之间不需要同步管道。所提出的IST的主要优点是:i)IST每次迭代向每个移动的节点分配更少的训练参数,从而显著降低通信开销,以及ii)每个设备训练小得多的模型,从而导致更少的计算成本和更好的能耗。因此,有充分的理由期待IST将比用于移动的应用的经典训练算法更好地扩展。该项目将研究如何将IST整合/扩展到各种NN架构,开发解释IST效率的新理论,并通过提出可扩展和扩展到移动的应用的硬件级系统实现来统一理论与实践。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Patch-Fool: Are Vision Transformers Always Robust Against Adversarial Perturbations?
- DOI:10.48550/arxiv.2203.08392
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Y. Fu;Shunyao Zhang;Shan-Hung Wu;Cheng Wan;Yingyan Lin
- 通讯作者:Y. Fu;Shunyao Zhang;Shan-Hung Wu;Cheng Wan;Yingyan Lin
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
- DOI:10.48550/arxiv.2203.10983
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Cheng Wan;Youjie Li;Ang Li;Namjae Kim;Yingyan Lin
- 通讯作者:Cheng Wan;Youjie Li;Ang Li;Namjae Kim;Yingyan Lin
LDP: Learnable Dynamic Precision for Efficient Deep Neural Network Training and Inference
- DOI:10.48550/arxiv.2203.07713
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Zhongzhi Yu;Y. Fu;Shang Wu;Mengquan Li;Haoran You;Yingyan Lin
- 通讯作者:Zhongzhi Yu;Y. Fu;Shang Wu;Mengquan Li;Haoran You;Yingyan Lin
PipeGCN: Efficient Full-Graph Training of Graph Convolutional Networks with Pipelined Feature Communication
- DOI:10.48550/arxiv.2203.10428
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Cheng Wan;Youjie Li;Cameron R. Wolfe;Anastasios Kyrillidis;Namjae Kim;Yingyan Lin
- 通讯作者:Cheng Wan;Youjie Li;Cameron R. Wolfe;Anastasios Kyrillidis;Namjae Kim;Yingyan Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Jermaine其他文献
Exploring phylogenetic hypotheses via Gibbs sampling on evolutionary networks
通过进化网络上的吉布斯采样探索系统发育假设
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Yun Yu;Christopher Jermaine;Luay K. Nakhleh - 通讯作者:
Luay K. Nakhleh
The Latent Community Model for Detecting Sybil Attacks in Social Networks
用于检测社交网络中女巫攻击的潜在社区模型
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Zhuhua Cai;Christopher Jermaine - 通讯作者:
Christopher Jermaine
Maintaining very large random samples using the geometric file
- DOI:
10.1007/s00778-007-0048-z - 发表时间:
2007-05-11 - 期刊:
- 影响因子:3.800
- 作者:
Abhijit Pol;Christopher Jermaine;Subramanian Arumugam - 通讯作者:
Subramanian Arumugam
Christopher Jermaine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Jermaine', 18)}}的其他基金
Collaborative Research: SHF: Medium: Semantics-Aware Neural Models of Code
合作研究:SHF:媒介:代码的语义感知神经模型
- 批准号:
2212557 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RPEP: III: celtSTEM Research Collaborative: Catapulting MSI Faculty and Students into Computational Research.
合作研究:CISE-MSI:RPEP:III:celtSTEM 研究合作:将 MSI 教师和学生推向计算研究。
- 批准号:
2131294 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Small: Applying Relational Database Design Principles to Machine Learning System Design
三:小:将关系数据库设计原理应用于机器学习系统设计
- 批准号:
2008240 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
- 批准号:
1918651 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
III: Small: Declarative Recursive Computation on a Database System
III:小型:数据库系统上的声明式递归计算
- 批准号:
1910803 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ABI Innovation: Algorithms and Models for Distributed Computation of Bayesian Phylogenetics
ABI Innovation:贝叶斯系统发育分布式计算算法和模型
- 批准号:
1355998 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
III: Medium: SimSQL: A Database System Supporting Implementation and Execution of Distributed Machine Learning Codes
III:媒介:SimSQL:支持分布式机器学习代码实现和执行的数据库系统
- 批准号:
1409543 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Data Mining and Cleaning for Medical Data Warehouses
III:媒介:协作研究:医疗数据仓库的数据挖掘和清理
- 批准号:
0964526 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
III-COR-Medium: Design and Implementation of the DBO Database System
III-COR-Medium:DBO数据库系统的设计与实现
- 批准号:
1007062 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Small: The MCDB Database System for Managing and Modeling Uncertainty
小:用于管理和建模不确定性的 MCDB 数据库系统
- 批准号:
0915315 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于Wireless Mesh Network的分布式操作系统研究
- 批准号:60673142
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
CC* Integration-Large: Husker-Net: Open Nebraska End-to-End Wireless Edge Networks
CC* 大型集成:Husker-Net:开放内布拉斯加州端到端无线边缘网络
- 批准号:
2321699 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Synergistic Cross-IoT N-Way Sensing using Wireless Traffic in the Edge
职业:在边缘使用无线流量进行协同跨物联网 N 路传感
- 批准号:
2316605 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Real-Time Federated Learning at the Wireless Edge via Algorithm-Hardware Co-Design
通过算法-硬件协同设计在无线边缘进行实时联合学习
- 批准号:
EP/X019160/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
RINGS: Enabling Wireless Edge-cloud Services via Autonomous Resource Allocation and Robust Physical Layer Technologies
RINGS:通过自主资源分配和强大的物理层技术实现无线边缘云服务
- 批准号:
2148128 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CC* Integration-Small: A Software-Defined Edge Infrastructure Testbed for Full-stack Data-Driven Wireless Network Applications
CC* Integration-Small:用于全栈数据驱动无线网络应用的软件定义边缘基础设施测试台
- 批准号:
2201536 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Service Provisioning at the Edge in 5G Wireless Networks
5G 无线网络边缘的协作服务配置
- 批准号:
RGPIN-2019-05667 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Enabling future mobile wireless networks edge with adaptive access control and caching
通过自适应访问控制和缓存实现未来移动无线网络边缘
- 批准号:
RGPIN-2021-03076 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Intelligent Edge: When Wireless Network Meets Machine Learning
智能边缘:当无线网络遇见机器学习
- 批准号:
RGPIN-2022-04754 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Resource allocation for Edge Computing in Next Generation Wireless Networks
下一代无线网络中边缘计算的资源分配
- 批准号:
RGPIN-2020-06110 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
WEPPE: Wireless Edge-Computing Personal Protective Equipment for Large-Scale Health Monitoring
WEPPE:用于大规模健康监测的无线边缘计算个人防护设备
- 批准号:
2201447 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




