ABI Innovation: Algorithms and Models for Distributed Computation of Bayesian Phylogenetics

ABI Innovation:贝叶斯系统发育分布式计算算法和模型

基本信息

  • 批准号:
    1355998
  • 负责人:
  • 金额:
    $ 115.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Given a set of molecular (DNA, RNA, or amino acid) sequences obtained from a number of organisms, phylogenetic inference is the task of reconstructing the evolutionary relationships among the sequences. These relationships are represented as an evolutionary tree, or, more generally, a directed, acyclic graph (DAG) when horizontal or vertical transmission of genetic material is modeled. The proposed project investigates the popular Bayesian approach to phylogenetic inference. Currently, all popular software packages for Bayesian inference utilize Markov Chain Monte Carlo (MCMC) algorithms. The problem is that these algorithms can take months to converge on large inference problems.The project's aim is to develop parallel algorithms for MCMC that are suitable for use in a modern cluster compute environment, such as Amazon.com's EC2 service. To ensure broader impacts of this work, the software, along with a user's manual and tutorial, will be open-sourced and the PIs will make special effort in recruiting students from underrepresented groupsFor a phylogenetic inference algorithm to scale to thousands of organisms, parallelization is mandatory. For example, one idea that the project will expore is the so-called Bayesian Forest (BF) approach. In the BF approach, the MCMC algorithm maintains not one tree or DAG, but dozens, hundreds, or thousands of trees or DAGs at the same time, where all of them work together and share information with one another as the algorithm runs. This tends to avoid problems associated with converging to poor, locally optimal solutions because as long as one tree/DAG has avoided a problem configuration, over time, that tree/DAG can pull the entire forest away from the poor solution. Crucially, since the most expensive computations over the individual trees/DAGs are independent of one another, it is easy to send them to different machines. The project will also consider distributed algorithms for challenging variants of the problem, such as multi-loci data sets and vertical and horizontal transmission of genetic material, as well as co-estimation of gene and species trees. All software, along with a user's manual and tutorial, will be open-sourced. The project web page will be available at http://cmj4.web.rice.edu/phylogenetics.
给定一组从许多生物体中获得的分子(DNA、RNA或氨基酸)序列,系统发育推断是重建序列之间进化关系的任务。这些关系被表示为进化树,或者更一般地,当遗传物质的水平或垂直传递被建模时,表示为有向无环图(DAG)。拟议的项目调查流行的贝叶斯方法的系统发育推断。目前,所有流行的软件包贝叶斯推理利用马尔可夫链蒙特卡罗(MCMC)算法。该项目的目标是为MCMC开发适用于现代集群计算环境(如Amazon.com的EC2服务)的并行算法。 为了确保这项工作产生更广泛的影响,该软件沿着用户手册和教程将是开源的,PI将特别努力从代表性不足的群体中招募学生。例如,该项目将探讨的一个想法是所谓的贝叶斯森林(BF)方法。 在BF方法中,MCMC算法不是维护一棵树或DAG,而是同时维护数十、数百或数千棵树或DAG,其中所有这些树或DAG在算法运行时一起工作并彼此共享信息。 这倾向于避免与收敛到差的局部最优解相关联的问题,因为只要一棵树/DAG避免了问题配置,随着时间的推移,该树/DAG可以将整个森林从差的解中拉出来。 至关重要的是,由于各个树/DAG上最昂贵的计算是相互独立的,因此很容易将它们发送到不同的机器。 该项目还将考虑分布式算法,以解决具有挑战性的问题变体,例如多位点数据集和遗传物质的垂直和水平传播,以及基因和物种树的共同估计。所有的软件,沿着用户手册和教程,将是开源的。 该项目的网页将在http://cmj4.web.rice.edu/phylogenetics上提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Jermaine其他文献

Exploring phylogenetic hypotheses via Gibbs sampling on evolutionary networks
通过进化网络上的吉布斯采样探索系统发育假设
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Yun Yu;Christopher Jermaine;Luay K. Nakhleh
  • 通讯作者:
    Luay K. Nakhleh
The Latent Community Model for Detecting Sybil Attacks in Social Networks
用于检测社交网络中女巫攻击的潜在社区模型
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuhua Cai;Christopher Jermaine
  • 通讯作者:
    Christopher Jermaine
Maintaining very large random samples using the geometric file
  • DOI:
    10.1007/s00778-007-0048-z
  • 发表时间:
    2007-05-11
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Abhijit Pol;Christopher Jermaine;Subramanian Arumugam
  • 通讯作者:
    Subramanian Arumugam

Christopher Jermaine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Jermaine', 18)}}的其他基金

Collaborative Research: SHF: Medium: Semantics-Aware Neural Models of Code
合作研究:SHF:媒介:代码的语义感知神经模型
  • 批准号:
    2212557
  • 财政年份:
    2022
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RPEP: III: celtSTEM Research Collaborative: Catapulting MSI Faculty and Students into Computational Research.
合作研究:CISE-MSI:RPEP:III:celtSTEM 研究合作:将 MSI 教师和学生推向计算研究。
  • 批准号:
    2131294
  • 财政年份:
    2021
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
III: Small: Applying Relational Database Design Principles to Machine Learning System Design
三:小:将关系数据库设计原理应用于机器学习系统设计
  • 批准号:
    2008240
  • 财政年份:
    2020
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
MLWiNS: Wireless On-the-Edge Training of Deep Networks Using Independent Subnets
MLWiNS:使用独立子网的深度网络无线边缘训练
  • 批准号:
    2003137
  • 财政年份:
    2020
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
Expeditions: Collaborative Research: Understanding the World Through Code
探险:合作研究:通过代码了解世界
  • 批准号:
    1918651
  • 财政年份:
    2020
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Continuing Grant
III: Small: Declarative Recursive Computation on a Database System
III:小型:数据库系统上的声明式递归计算
  • 批准号:
    1910803
  • 财政年份:
    2019
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
III: Medium: SimSQL: A Database System Supporting Implementation and Execution of Distributed Machine Learning Codes
III:媒介:SimSQL:支持分布式机器学习代码实现和执行的数据库系统
  • 批准号:
    1409543
  • 财政年份:
    2014
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Data Mining and Cleaning for Medical Data Warehouses
III:媒介:协作研究:医疗数据仓库的数据挖掘和清理
  • 批准号:
    0964526
  • 财政年份:
    2010
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Continuing Grant
Small: The MCDB Database System for Managing and Modeling Uncertainty
小:用于管理和建模不确定性的 MCDB 数据库系统
  • 批准号:
    0915315
  • 财政年份:
    2009
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
III-COR-Medium: Design and Implementation of the DBO Database System
III-COR-Medium:DBO数据库系统的设计与实现
  • 批准号:
    1007062
  • 财政年份:
    2009
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
ABI Innovation: Fast Algorithms and Tools for Single-Molecule Sequencing Reads
ABI 创新:单分子测序读取的快速算法和工具
  • 批准号:
    1759856
  • 财政年份:
    2018
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
ABI Innovation: New Algorithms for Biological X-ray Free Electron Laser Data
ABI Innovation:生物 X 射线自由电子激光数据的新算法
  • 批准号:
    1565180
  • 财政年份:
    2016
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Continuing Grant
ABI Innovation: Scalable kmer-based algorithms and software for gene expression and regulation
ABI Innovation:用于基因表达和调控的可扩展的基于 kmer 的算法和软件
  • 批准号:
    1564785
  • 财政年份:
    2016
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
ABI Innovation: Advanced informatics and effective algorithms to enable CryoEM protein structure prediction and density analysis
ABI 创新:先进的信息学和有效的算法,可实现 CryoEM 蛋白质结构预测和密度分析
  • 批准号:
    1356621
  • 财政年份:
    2014
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Innovation: Algorithms And Tools For Modeling Macromolecular Assemblies
合作研究:ABI 创新:大分子组装建模的算法和工具
  • 批准号:
    1356306
  • 财政年份:
    2014
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms and tools for modeling macromolecular assemblies
合作研究:ABI Innovation:用于模拟大分子组装体的算法和工具
  • 批准号:
    1356388
  • 财政年份:
    2014
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
ABI Innovation: Co-evolution of domains, genes and species: models, algorithms, and software
ABI 创新:领域、基因和物种的共同进化:模型、算法和软件
  • 批准号:
    1262593
  • 财政年份:
    2013
  • 资助金额:
    $ 115.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了