Structured Fluids from Reduced Symmetry Molecules
减少对称性分子的结构化流体
基本信息
- 批准号:0964765
- 负责人:
- 金额:$ 69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYRecent studies of a team by A. Jákli, J.T. Gleeson and S. Sprunt at Kent State University have clearly demonstrated that fluids built from "bent-core" (or "banana" -shaped) molecules exhibit strikingly different properties from those composed of rod-shape materials; examples include anomalous flow viscosity and giant electro-mechanical coupling the latter being of high technological promise for molecular-scale energy conversion applications. These materials also apparently possess complex structure on the nanometer scale, and exhibit indications of novel states of matter. To develop a complete comprehension of these structures, the Kent State Group will utilize a powerful range of carefully targeted experimental techniques, available in house or through active participation in national user facilities. Specific new classes of reduced-symmetry materials to be investigated include molecules having W, T, X and H-shape, exciting new polymeric fluids and gels based on bent-core molecules, as well as previously uninvestigated low molecular weight bent-core molecules. The specific research objectives and scientific benefits of the proposed research are: (1) specific elucidation of nanoscopic structure in bent-core fluids; (2) investigation into the origins and limits of anomalously large coupling between electric properties and mechanical deformation (3) studies of strongly asymmetric bent-core molecules that form novel three-dimensional structures; (4) investigation of the optical and electro-mechanical properties of main- and side- chain polymers containing bent-core sub-units; and (5) studies of structured fluids under high magnetic fields to search for field-induced symmetry breaking transitions.NON-TECHNICAL SUMMARYStructured fluids are not only of fundamental scientific interest but have also enormous technological importance. Perhaps the most familiar example is liquid crystals, whose applications range from iPod screens to bullet-proof vests. The key factor determining the physical behavior of structured fluids is the symmetry properties of the molecular constituents. The team of A. Jákli, J.T. Gleeson and S. Sprunt at Kent State University will study compounds whose building blocks are not simple rods as in traditional liquid crystals, but either bent-shape, W, T, X and H shaped. A symmetry change in underlying molecule shape can lead to dramatically different and technologically promising behavior of a fluid composed of such molecules. This project offers the promise of significant advances in technology, such as low-cost, wearable (or potentially bio-implantable) electricity generators based on enhanced electro-mechanical coupling and a new generation of fast, low-power reflective color displays. The proposed research will provide critical feedback for synthetic chemists to improve material properties; key collaborators in this effort include Profs. R. Twieg (Department of Chemistry, Kent State University) and R. Verduzco (Department of Chemical Engineering, Rice University). The team's multi-faceted education program will train doctoral students to be effective players in a twenty-first century entrepreneurial environment. The principal investigators also will bring undergraduates, particularly from colleges serving traditionally under-represented groups, into a cutting-edge research environment, with the goal of increasing their participation in the high-tech workforce of tomorrow.Support from the Solid State and Materials Chemistry program is acknowledged.
技术总结A. Jákli,J.T. Gleeson和S.肯特州立大学的斯普朗特已经清楚地证明,由“香蕉核”(或“香蕉”形)分子构成的流体与由棒状材料构成的流体表现出惊人的不同性质;例子包括反常流动粘度和巨大的机电耦合,后者在分子尺度的能量转换应用中具有高技术前景。这些材料显然还具有纳米尺度的复杂结构,并表现出新的物质状态的迹象。 为了全面了解这些结构,肯特州小组将利用一系列强大的、有针对性的实验技术,这些技术可在内部或通过积极参与国家用户设施获得。待研究的特定新类别的减少对称性的材料包括具有W、T、X和H形状的分子,令人兴奋的新聚合物流体和凝胶基于双核分子,以及先前未研究的低分子量双核分子。具体的研究目标和科学效益是:(1)明确阐明非对称核流体的纳米结构,(2)研究电性能和机械变形之间的巨大耦合的起源和局限性,(3)研究形成新型三维结构的强非对称非对称核分子,(4)研究非对称核流体的纳米结构,(5)研究非对称核流体的纳米结构,(6)研究非对称核流体的纳米结构。(4)主链和侧链含双核亚基聚合物的光学和机电性能研究;(5)研究强磁场下的结构流体,寻找场诱导对称性破缺跃迁。结构化流体不仅具有基本的科学意义,而且具有巨大的技术重要性。 也许最熟悉的例子是液晶,其应用范围从iPod屏幕到防弹背心。决定结构流体物理行为的关键因素是分子组元的对称性。A的团队Jákli,JT Gleeson和S.肯特州立大学的斯普朗特将研究这样的化合物,其结构单元不是传统液晶中的简单棒,而是X形、W形、T形、X形和H形。潜在的分子形状的对称性变化可以导致由这种分子组成的流体的显著不同的和技术上有前途的行为。 该项目提供了重大技术进步的承诺,例如基于增强机电耦合的低成本,可穿戴(或潜在的生物植入)发电机和新一代快速,低功耗反射式彩色显示器。拟议的研究将为合成化学家提供关键反馈,以改善材料性能;这项工作的主要合作者包括教授。R. Twieg(肯特州立大学化学系)和R. Verduzco(莱斯大学化学工程系)。该团队的多方面教育计划将培养博士生成为二十一世纪世纪创业环境中的有效参与者。主要研究人员还将把本科生,特别是来自传统上代表性不足的群体的大学,带入前沿的研究环境,目的是增加他们对未来高科技劳动力的参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antal Jakli其他文献
Piezoelectricity of phospholipids: Are cell membranes also piezoelectric?
- DOI:
10.1016/j.bpj.2008.12.394 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Antal Jakli - 通讯作者:
Antal Jakli
Antal Jakli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antal Jakli', 18)}}的其他基金
Electromechanical Effects of Ferroelectric Nematic Liquid Crystals
铁电向列液晶的机电效应
- 批准号:
2210083 - 财政年份:2022
- 资助金额:
$ 69万 - 项目类别:
Continuing Grant
IRES: Collaborative Research in Europe on Liquid Crystals (CRELIC-IRES)
IRES:欧洲液晶合作研究 (CRELIC-IRES)
- 批准号:
0727185 - 财政年份:2007
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Ferroelectric phenomena in soft matter systems
合作研究:FRG:软物质系统中的铁电现象
- 批准号:
0456221 - 财政年份:2005
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
- 批准号:
2323917 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
PERMEATION OF POLYMER FLUIDS IN SOILS (POPFS)
聚合物流体在土壤中的渗透 (POPFS)
- 批准号:
EP/X034437/1 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Research Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
Hydrodynamics of quantum fluids
量子流体的流体动力学
- 批准号:
DP240101033 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Discovery Projects
Interplay between orientation and lift forces on non-spherical particles in complex fluids
复杂流体中非球形颗粒的方向力和升力之间的相互作用
- 批准号:
2341154 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Standard Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Studentship
Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
- 批准号:
2316136 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Growing a New Science of Landscape Terraformation: The Convergence of Rock, Fluids, and Life to form Complex Ecosystems Across Scales
合作研究:GCR:发展景观改造的新科学:岩石、流体和生命的融合形成跨尺度的复杂生态系统
- 批准号:
2426095 - 财政年份:2024
- 资助金额:
$ 69万 - 项目类别:
Continuing Grant