Wishart Processes in Statistics and Econometrics: Theory and Applications

统计和计量经济学中的威沙特过程:理论与应用

基本信息

  • 批准号:
    196283488
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2011
  • 资助国家:
    德国
  • 起止时间:
    2010-12-31 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to make a series of theoretical and practical contributions in two major fields. The first field deals with statistical properties of the Wishart distribution and its several extensions. First, we analyze the Wishart distribution not isolated, but in a combination with a Gaussian vector. This fact is motivated by applications in discriminant analysis and portfolio theory, where the key quantities are given by a product of inverse Wishart matrix and a Gaussian vector. Second, in the light of the increasing importance of asymmetric distributions, we extend the concept of the Wishart matrices to matrices obtained from truncated and skewed Gaussian vectors. Third, we use the results to extend the paper of Bodnar et al. (2009) by developing statistical monitoring procedures for new distribution classes. The second field of contribution is econometrically oriented. Recent econometric developments show an increasing interest in time-series models for Wishart processes. Within the project we will extend the results of Gourieroux et al. (2009) and Chiriac and Voev (2010) to develop the theory of autoregressive (inverse, singular) Wishart processes. This type of the models is particularly important for multivariate modelling of the volatility dynamics and realized volatilities based on high-frequency data. Furthermore, a new multivariate class of stochastic volatility processes will be suggested which relies on the square root of the autoregressive Wishart process. This is a new and interesting alternative to current multivariate GARCH models.
该项目的目的是在两个主要领域做出一系列的理论和实践贡献。第一个字段处理Wishart分布及其几个扩展的统计特性。首先,我们分析了Wishart分布,不是孤立的,而是与高斯向量的组合。这一事实是由判别分析和投资组合理论中的应用所激发的,其中关键量由逆Wishart矩阵和高斯向量的乘积给出。其次,鉴于不对称分布的重要性日益增加,我们将Wishart矩阵的概念扩展到由截断和偏斜高斯向量得到的矩阵。第三,我们通过开发新分布类别的统计监测程序,利用结果扩展了Bodnar等人(2009)的论文。第二个贡献领域是计量经济学导向的。最近的计量经济学发展表明,人们对Wishart过程的时间序列模型越来越感兴趣。在该项目中,我们将扩展Gourieroux等人(2009)和Chiriac和Voev(2010)的结果,以发展自回归(逆,奇异)Wishart过程理论。这类模型对于波动性动态和基于高频数据的已实现波动性的多变量建模尤为重要。此外,还提出了一种新的多元随机波动过程,它依赖于自回归Wishart过程的平方根。这是当前多元GARCH模型的一个新的和有趣的替代方案。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Forecasting volatility with empirical similarity and Google Trends
Bowling Green State University, Bowling Green
鲍灵格林州立大学,鲍灵格林
  • DOI:
    10.6092/issn.1973-2201/4326
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Bodnar;A.K. Gupta
  • 通讯作者:
    A.K. Gupta
How risky is the optimal portfolio which maximizes the Sharpe ratio?
  • DOI:
    10.1007/s10182-016-0270-3
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Bodnar, Taras;Zabolotskyy, Taras
  • 通讯作者:
    Zabolotskyy, Taras
An exact test about the covariance matrix
  • DOI:
    10.1016/j.jmva.2013.12.007
  • 发表时间:
    2014-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arjun K. Gupta;Taras Bodnar
  • 通讯作者:
    Arjun K. Gupta;Taras Bodnar
Robust Surveillance of Covariance Matrices Using a Single Observation
使用单个观测值对协方差矩阵进行稳健监视
  • DOI:
    10.1007/s13171-013-0044-x
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bodnar;Bodnar;Y. Okhrin
  • 通讯作者:
    Y. Okhrin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Taras Bodnar其他文献

Privatdozent Dr. Taras Bodnar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Taras Bodnar', 18)}}的其他基金

Bayesian Estimation of the Multi-Period Optimal Portfolio Weights and Risk Measures
多时期最优投资组合权重和风险度量的贝叶斯估计
  • 批准号:
    244925108
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Physics and Statistics of Earthquake Processes
地震过程物理学与统计学
  • 批准号:
    RGPIN-2020-06424
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers in Statistics for Stochastic Processes: SPDEs and High-Dimensionality
随机过程统计新前沿:SPDE 和高维
  • 批准号:
    441612579
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants
Physics and Statistics of Earthquake Processes
地震过程物理学与统计学
  • 批准号:
    RGPIN-2020-06424
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Statistics of porous media attributes and mixing processes state variables across scales
跨尺度多孔介质属性和混合过程状态变量的统计
  • 批准号:
    2422226
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Physics and Statistics of Earthquake Processes
地震过程物理学与统计学
  • 批准号:
    RGPIN-2020-06424
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Study of the gas accretion processes onto the supermassive black holes through the spatial statistics of AGN
通过活动星系核的空间统计研究超大质量黑洞的气体吸积过程
  • 批准号:
    20K22360
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Statistical inference for nonstandard data via time varying processes, robust regression and directional statistics
通过时变过程、稳健回归和方向统计对非标准数据进行统计推断
  • 批准号:
    20K13467
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High-dimensional statistics for point and jump processes
点和跳跃过程的高维统计
  • 批准号:
    439154027
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastic Processes and Partial Differential Equations for problems in Statistics and Machine learning
统计和机器学习中问题的随机过程和偏微分方程
  • 批准号:
    2129618
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Rupture processes and magnitude statistics of inducedearthquakes and aftershocks: A detailed view from deepSouth African gold mines
诱发地震和余震的破裂过程和震级统计:南非金矿深处的详细视图
  • 批准号:
    343435030
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Infrastructure Priority Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了