Generalized Fiducial Inference for Modern Statistical Problems

现代统计问题的广义基准推断

基本信息

  • 批准号:
    0968714
  • 负责人:
  • 金额:
    $ 17.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-03 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

In this proposal the investigators revisit Fisher's controversial fiducial argument with a modern set of questions in mind. This is motivated by the success of generalized inference as introduced by Tsui & Weerahandi (1989), which in fact leads to the same results as Fisher's fiducial inference (Hannig, Iyer & Patterson, 2006). The investigators do not attempt to derive a new ``paradox free theory of fiducial inference''. Instead, with minimal assumptions, the investigators present a new simple fiducial recipe that can be applied to conduct statistical inference via the construction of generalized fiducial distributions. This recipe is inspired by the concept of generalized pivotal quantity and is designed to be fairly easily applicable in many practical applications. It can be applied regardless of the dimension of the parameter space (i.e., including nonparametric problems), and it often leads to statistical procedures that are asymptotically exact and, more importantly, possess very good approximate small sample properties. The investigators propose to investigate theoretical properties of generalized fiducial distributions for statistical problems and apply their findings to various problems of broader interest. Systematic study of properties of generalized fiducial inference will increase our understanding of foundations of statistics and will give statisticians an additional tool to use when dealing with problems they encounter in practice. More directly, successful solution of the proposed applied problems will immediately bear fruit in the application areas, e.g., pharmaceutical statistics and metrology. For instance, the U.S. Food and Drug Administration (FDA) guidance document spells out analysis procedures for demonstration of equivalence of two or more drug formulations. The investigators aim to show that the fiducial approach will lead to more efficient procedures, which will result in cost and time savings, an important issue for the drug industry. In metrology, the International Bureau of Weights and Measures (BIPM) in conjunction with the International Organization for Standardization (ISO), has published a ``Guide to Expression of Uncertainty in Measurements" (GUM) which spells out the procedures to be followed by national metrological institutes such as NIST in the US, NPL in UK, and PTB in Germany. A problem that is unique to metrology is that every measurement is subject to unknown and unknowable systematic errors that are often larger than random errors. The only way to quantify these unknowable systematic errors is via specification of subjective distributions for them. The GUM specifies how to combine data-based estimates of standard deviations for some error components in the calculations and subjective estimates of uncertainty for other error components. The investigators aim to demonstrate that the fiducial method provides a natural approach for accomplishing this. Such results are likely to influence the metrology community in modifying and improving their current procedures.
在这个提议中,研究人员重新审视了费舍尔有争议的基准论点,并提出了一系列现代问题。 这是由Tsui Weerahandi(1989)引入的广义推理的成功所推动的,它实际上导致了与Fisher的基准推理相同的结果(Hannig,Iyer Patterson,2006)。 研究人员并不试图推导出一个新的“无悖论的信任推理理论”。 相反,在最小的假设下,研究人员提出了一种新的简单的基准配方,可以通过构建广义基准分布来进行统计推断。 这个配方的灵感来自于广义枢轴量的概念,并且被设计成在许多实际应用中相当容易应用。无论参数空间的维度如何(即,包括非参数问题),并且它通常导致渐近精确的统计过程,更重要的是,具有非常好的近似小样本性质。研究人员建议研究统计问题的广义置信分布的理论特性,并将他们的发现应用于更广泛的问题。 系统研究广义置信推理的性质将增加我们对统计基础的理解,并将为统计学家在处理实践中遇到的问题时提供额外的工具。 更直接地说,成功解决所提出的应用问题将立即在应用领域产生成果,例如,药物统计学和计量学。例如,美国食品和药物管理局(FDA)的指导文件阐明了用于证明两种或多种药物制剂等效性的分析程序。研究人员的目标是表明,基准方法将导致更有效的程序,这将导致成本和时间的节省,这是制药行业的一个重要问题。在计量学方面,国际计量局(BIPM)与国际标准化组织(ISO)共同出版了一份“测量不确定度表示指南”(GUM),详细说明了美国NIST、英国NPL和德国PTB等国家计量机构应遵循的程序。计量学特有的问题是,每次测量都受到未知和不可知的系统误差的影响,这些系统误差通常大于随机误差。量化这些不可知的系统误差的唯一方法是通过指定它们的主观分布。GUM规定了如何结合联合收割机的数据为基础的估计标准偏差的一些误差成分的计算和主观估计的不确定性的其他误差成分。研究人员的目标是证明基准方法提供了一种实现这一目标的自然方法。这些结果可能会影响计量界修改和改进其现行程序。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Hannig其他文献

Dempster-Shafer P-values: Thoughts on an Alternative Approach for Multinomial Inference
Dempster-Shafer P 值:关于多项式推理替代方法的思考
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kentaro Hoffman;Kai Zhang;Tyler H. McCormick;Jan Hannig
  • 通讯作者:
    Jan Hannig
Tracking of multiple merging and splitting targets: A statistical perspective
跟踪多个合并和分裂目标:统计视角
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Storlie;Thomas C.M. Lee;Jan Hannig;D. Nychka
  • 通讯作者:
    D. Nychka
Approximating Extremely Large Networks via Continuum Limits
通过连续体极限逼近极大的网络
  • DOI:
    10.1109/access.2013.2281668
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yang Zhang;E. Chong;Jan Hannig;D. Estep
  • 通讯作者:
    D. Estep
Autocovariance Function Estimation via Penalized Regression
通过惩罚回归进行自协方差函数估计
Pivotal methods in the propagation of distributions
分布传播的关键方法
  • DOI:
    10.1088/0026-1394/49/3/382
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Chih;Jan Hannig;H. Iyer
  • 通讯作者:
    H. Iyer

Jan Hannig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Hannig', 18)}}的其他基金

Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210337
  • 财政年份:
    2022
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
  • 批准号:
    1916115
  • 财政年份:
    2019
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference for Massive Data and High Dimensional Problems
协作研究:海量数据和高维问题的广义基准推理
  • 批准号:
    1512893
  • 财政年份:
    2015
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Generalized Fiducial Inference - An Emerging View
协作研究:广义基准推理 - 一种新兴观点
  • 批准号:
    1007543
  • 财政年份:
    2010
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
ATD: Stochastic algorithms for countering chemical and biological threats
ATD:应对化学和生物威胁的随机算法
  • 批准号:
    1016441
  • 财政年份:
    2010
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
Generalized Fiducial Inference for Modern Statistical Problems
现代统计问题的广义基准推断
  • 批准号:
    0707037
  • 财政年份:
    2007
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
Problems Related to Gaussian Processes
与高斯过程相关的问题
  • 批准号:
    0504737
  • 财政年份:
    2005
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant

相似国自然基金

两类复杂数据情形下的Fiducial推断
  • 批准号:
    10771126
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
非参数和半参数Fiducial推断
  • 批准号:
    10771015
  • 批准年份:
    2007
  • 资助金额:
    18.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210388
  • 财政年份:
    2022
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210337
  • 财政年份:
    2022
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
  • 批准号:
    1916125
  • 财政年份:
    2019
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
  • 批准号:
    1916115
  • 财政年份:
    2019
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference for Massive Data and High Dimensional Problems
协作研究:海量数据和高维问题的广义基准推理
  • 批准号:
    1512893
  • 财政年份:
    2015
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Generalized Fiducial Inference for Massive Data and High Dimensional Problems
协作研究:海量数据和高维问题的广义基准推理
  • 批准号:
    1512945
  • 财政年份:
    2015
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Generalized Fiducial Inference - An Emerging View
协作研究:广义基准推理 - 一种新兴观点
  • 批准号:
    1007520
  • 财政年份:
    2010
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Generalized Fiducial Inference - An Emerging View
协作研究:广义基准推理 - 一种新兴观点
  • 批准号:
    1007543
  • 财政年份:
    2010
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Generalized Fiducial Inference -- An Emerging View
协作研究:广义基准推理——一种新兴观点
  • 批准号:
    1007542
  • 财政年份:
    2010
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
Generalized Fiducial Inference for Modern Statistical Problems
现代统计问题的广义基准推断
  • 批准号:
    0707037
  • 财政年份:
    2007
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了