Collaborative Research: Generalized Fiducial Inference for Massive Data and High Dimensional Problems

协作研究:海量数据和高维问题的广义基准推理

基本信息

  • 批准号:
    1512893
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

R. A. Fisher, the father of modern statistics, proposed the idea of Fiducial Inference in the 1930s. While his proposal led to some interesting methods for quantifying uncertainty, other prominent statisticians of the time did not accept Fisher's approach because it went against the ideas of statistical inference of the time. Beginning around the year 2000, the PIs and collaborators started to re-investigate the ideas of fiducial inference and discovered that Fisher's approach, when properly generalized, would open doors to solve many important and difficult problems of uncertainty quantification. The PIs termed their generalization of Fisher's ideas as generalized fiducial inference. After many years of preliminary investigations, the PIs developed a coherent, well thought out plan for a systematic research program in this area. A large part of this project develops practical solutions for different modeling problems that have natural applications in diverse fields. Finance (volatility estimation) and measurement science (calibration of measurements from different government labs, for example, US NIST) are two primary examples, while others include gene expression data, climate problems, recommender systems, and computer vision.This project is motivated by the success of generalized fiducial inference (GFI) as introduced by the PIs as a generalization of Fisher's fiducial argument. The PIs are now working towards scaling up their GFI methodology to handle big data problems and other difficult problems that have emerged due to our ability to collect massive amounts of data rapidly. In particular the PIs plan to conduct research into the following topics: (i) a thorough investigation of fundamental issues of GFI including connection with Approximate Bayesian Calculations and higher order asymptotics; (ii) sparse covariance estimation using GFI in the "large p small n" context; (iii) development of the idea of Fiducial Selector so that a sparsity of the fiducial distribution is induced as a natural outcome of a minimization problem; (iv) uncertainty quantification for the matrix completion problem using GFI, and (v) applications of GFI to a wide variety of practical problems, such as volatility estimation in finance and international key comparison experiments in measurement science.
现代统计学之父 R. A. Fisher 在 20 世纪 30 年代提出了基准推理的概念。 虽然他的提议带来了一些有趣的量化不确定性的方法,但当时的其他著名统计学家并不接受费舍尔的方法,因为它违背了当时统计推断的思想。 从 2000 年左右开始,PI 和合作者开始重新研究基准推理的想法,并发现费舍尔的方法如果得到适当的推广,将为解决不确定性量化的许多重要且困难的问题打开大门。 PI 将他们对费舍尔思想的概括称为广义基准推理。 经过多年的初步调查,PI 为该领域的系统研究计划制定了连贯的、深思熟虑的计划。 该项目的很大一部分是为不同领域的自然应用的不同建模问题开发实用的解决方案。 金融(波动性估计)和测量科学(不同政府实验室的测量校准,例如美国 NIST)是两个主要例子,其他包括基因表达数据、气候问题、推荐系统和计算机视觉。该项目的动机是广义基准推理 (GFI) 的成功,PI 引入了广义基准推理 (GFI),作为费舍尔基准论证的概括。 PI 目前正在努力扩展其 GFI 方法,以处理大数据问题以及由于我们快速收集大量数据的能力而出现的其他难题。 特别是,PI 计划对以下主题进行研究:(i)彻底调查 GFI 的基本问题,包括与近似贝叶斯计算和高阶渐近学的联系; (ii) 在“大p小n”背景下使用GFI进行稀疏协方差估计; (iii) 发展基准选择器的思想,以便将基准分布的稀疏性作为最小化问题的自然结果而产生; (iv) 使用 GFI 对矩阵补全问题进行不确定性量化,以及 (v) GFI 在各种实际问题中的应用,例如金融中的波动性估计和测量科学中的国际关键比较实验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Hannig其他文献

Dempster-Shafer P-values: Thoughts on an Alternative Approach for Multinomial Inference
Dempster-Shafer P 值:关于多项式推理替代方法的思考
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kentaro Hoffman;Kai Zhang;Tyler H. McCormick;Jan Hannig
  • 通讯作者:
    Jan Hannig
Tracking of multiple merging and splitting targets: A statistical perspective
跟踪多个合并和分裂目标:统计视角
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Storlie;Thomas C.M. Lee;Jan Hannig;D. Nychka
  • 通讯作者:
    D. Nychka
Approximating Extremely Large Networks via Continuum Limits
通过连续体极限逼近极大的网络
  • DOI:
    10.1109/access.2013.2281668
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yang Zhang;E. Chong;Jan Hannig;D. Estep
  • 通讯作者:
    D. Estep
Autocovariance Function Estimation via Penalized Regression
通过惩罚回归进行自协方差函数估计
Pivotal methods in the propagation of distributions
分布传播的关键方法
  • DOI:
    10.1088/0026-1394/49/3/382
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Chih;Jan Hannig;H. Iyer
  • 通讯作者:
    H. Iyer

Jan Hannig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Hannig', 18)}}的其他基金

Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210337
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
  • 批准号:
    1916115
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference - An Emerging View
协作研究:广义基准推理 - 一种新兴观点
  • 批准号:
    1007543
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
ATD: Stochastic algorithms for countering chemical and biological threats
ATD:应对化学和生物威胁的随机算法
  • 批准号:
    1016441
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Generalized Fiducial Inference for Modern Statistical Problems
现代统计问题的广义基准推断
  • 批准号:
    0968714
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Generalized Fiducial Inference for Modern Statistical Problems
现代统计问题的广义基准推断
  • 批准号:
    0707037
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Problems Related to Gaussian Processes
与高斯过程相关的问题
  • 批准号:
    0504737
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210388
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210337
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
  • 批准号:
    2150486
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100791
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
  • 批准号:
    2006612
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Collaborative Research: Generalized Caching-As-A-Service
CNS 核心:媒介:协作研究:通用缓存即服务
  • 批准号:
    1955593
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CNS Core: Medium: Collaborative Research: Generalized Caching-As-A-Service
CNS 核心:媒介:协作研究:通用缓存即服务
  • 批准号:
    1956229
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
  • 批准号:
    2006453
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
  • 批准号:
    1916125
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了