Collaborative Research: Generalized Fiducial Inference for Massive Data and High Dimensional Problems

协作研究:海量数据和高维问题的广义基准推理

基本信息

  • 批准号:
    1512893
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

R. A. Fisher, the father of modern statistics, proposed the idea of Fiducial Inference in the 1930s. While his proposal led to some interesting methods for quantifying uncertainty, other prominent statisticians of the time did not accept Fisher's approach because it went against the ideas of statistical inference of the time. Beginning around the year 2000, the PIs and collaborators started to re-investigate the ideas of fiducial inference and discovered that Fisher's approach, when properly generalized, would open doors to solve many important and difficult problems of uncertainty quantification. The PIs termed their generalization of Fisher's ideas as generalized fiducial inference. After many years of preliminary investigations, the PIs developed a coherent, well thought out plan for a systematic research program in this area. A large part of this project develops practical solutions for different modeling problems that have natural applications in diverse fields. Finance (volatility estimation) and measurement science (calibration of measurements from different government labs, for example, US NIST) are two primary examples, while others include gene expression data, climate problems, recommender systems, and computer vision.This project is motivated by the success of generalized fiducial inference (GFI) as introduced by the PIs as a generalization of Fisher's fiducial argument. The PIs are now working towards scaling up their GFI methodology to handle big data problems and other difficult problems that have emerged due to our ability to collect massive amounts of data rapidly. In particular the PIs plan to conduct research into the following topics: (i) a thorough investigation of fundamental issues of GFI including connection with Approximate Bayesian Calculations and higher order asymptotics; (ii) sparse covariance estimation using GFI in the "large p small n" context; (iii) development of the idea of Fiducial Selector so that a sparsity of the fiducial distribution is induced as a natural outcome of a minimization problem; (iv) uncertainty quantification for the matrix completion problem using GFI, and (v) applications of GFI to a wide variety of practical problems, such as volatility estimation in finance and international key comparison experiments in measurement science.
现代统计的父亲R. A. Fisher提出了1930年代基准推论的想法。 尽管他的提议导致了一些有趣的方法来量化不确定性,但当时的其他杰出统计学家并不接受费舍尔的方法,因为这违背了当时的统计推断。 从2000年左右开始,PIS和合作者开始重新调查信托推断的想法,并发现Fisher的方法在正确概括后将打开大门,以解决许多不确定性量化的重要和困难的问题。 PIS称他们对Fisher的思想的概括是普遍的信托推断。 经过多年的初步研究,PIS制定了一项连贯,经过深思熟虑的计划,该计划在该领域进行了系统的研究计划。 该项目的很大一部分为在不同领域具有自然应用的不同建模问题开发了实用解决方案。 Finance (volatility estimation) and measurement science (calibration of measurements from different government labs, for example, US NIST) are two primary examples, while others include gene expression data, climate problems, recommender systems, and computer vision.This project is motivated by the success of generalized fiducial inference (GFI) as introduced by the PIs as a generalization of Fisher's fiducial argument. PI现在正在努力扩大其GFI方法,以处理大数据问题和其他困难问题,这些问题由于我们能够快速收集大量数据而出现。 特别是PIS计划对以下主题进行研究:(i)对GFI的基本问题进行彻底调查,包括与近似贝叶斯计算和高阶渐近学的联系; (ii)使用GFI在“大P小N”上下文中使用GFI的稀疏协方差估计; (iii)发展基准选择者的思想,以使基准分布的稀疏性被诱导为最小化问题的自然结果; (iv)使用GFI的矩阵完成问题的不确定性量化,以及(v)GFI在各种实际问题上的应用,例如金融中的波动性估计和测量科学中的国际关键比较实验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Hannig其他文献

Tracking of multiple merging and splitting targets: A statistical perspective
跟踪多个合并和分裂目标:统计视角
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Storlie;Thomas C.M. Lee;Jan Hannig;D. Nychka
  • 通讯作者:
    D. Nychka
Dempster-Shafer P-values: Thoughts on an Alternative Approach for Multinomial Inference
Dempster-Shafer P 值:关于多项式推理替代方法的思考
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kentaro Hoffman;Kai Zhang;Tyler H. McCormick;Jan Hannig
  • 通讯作者:
    Jan Hannig
Autocovariance Function Estimation via Penalized Regression
通过惩罚回归进行自协方差函数估计
Approximating Extremely Large Networks via Continuum Limits
通过连续体极限逼近极大的网络
  • DOI:
    10.1109/access.2013.2281668
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yang Zhang;E. Chong;Jan Hannig;D. Estep
  • 通讯作者:
    D. Estep
Pivotal methods in the propagation of distributions
分布传播的关键方法
  • DOI:
    10.1088/0026-1394/49/3/382
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Chih;Jan Hannig;H. Iyer
  • 通讯作者:
    H. Iyer

Jan Hannig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Hannig', 18)}}的其他基金

Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210337
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
  • 批准号:
    1916115
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Fiducial Inference - An Emerging View
协作研究:广义基准推理 - 一种新兴观点
  • 批准号:
    1007543
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
ATD: Stochastic algorithms for countering chemical and biological threats
ATD:应对化学和生物威胁的随机算法
  • 批准号:
    1016441
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Generalized Fiducial Inference for Modern Statistical Problems
现代统计问题的广义基准推断
  • 批准号:
    0968714
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Generalized Fiducial Inference for Modern Statistical Problems
现代统计问题的广义基准推断
  • 批准号:
    0707037
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Problems Related to Gaussian Processes
与高斯过程相关的问题
  • 批准号:
    0504737
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

字典设计理论统一下的广义正交线性调频复用信号应用于水声探测通信一体化的波形设计方法研究
  • 批准号:
    52371352
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
三轴卸荷下深部复合岩石广义应力松弛特性及时效破损机理研究
  • 批准号:
    52304099
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义特征值方法的随机时滞系统精确控制研究
  • 批准号:
    62373178
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于广义分数阶算子的火成岩非线性蠕变本构模型及动力学研究
  • 批准号:
    12372010
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
幂零李群上与广义薛定谔算子相关的若干问题研究
  • 批准号:
    12361017
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210388
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
  • 批准号:
    10416631
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
  • 批准号:
    10649684
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
  • 批准号:
    2210337
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了