Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
基本信息
- 批准号:1916115
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data and their use have become extremely important in modern society. This provides for an urgent need to study mathematical foundations of statistics and data science. In this project the PIs explore interaction of generalized fiducial inference with modern data science problems and techniques. There are several benefits of the proposed research. First, it is expected that the proposed research will increase our understanding of inference and relationships between the frequentist, fiducial and Bayesian paradigms and how do these paradigms fit into data science which the aim to improve better data science practice. Second, it is expected to lead to new and efficient procedures for quantifying uncertainty in a number of applications. An important example is the calibration of likelihood ratios reported by data science algorithms in forensic science that has potential implication for practical usage of likelihood ratios in courtroom. Additionally, the project will provide research opportunities to graduate students and, in particular, help train women and minority graduate students in the field that is of a great benefit to society.Beginning around the year 2000, the PIs and collaborators started to re-investigate the ideas of fiducial inference and discovered that Fisher's approach, when properly generalized, opens doors to solve many important and difficult problems of uncertainty quantification. After many years of preliminary investigations, the team was able to put together a coherent, well thought out plan for a systematic research program in this area. The PIs termed their generalization of Fisher's ideas as generalized fiducial inference (GFI). The PIs are now working towards applying their GFI methodology to handle data science problems that have emerged due to our ability to collect massive amounts of data rapidly. In particular the PIs propose to conduct research into the following topics: (1) In-depth investigation of fundamental issues of GFI so that they can be simply used on manifolds, with constraint, and penalties. This is essential for applicability. (2) Development of a bias free fiducial selector, so that a sparsity of the fiducial distribution is induced as a natural outcome of a minimization problem and unbiasedness is achieved using a novel de-biasing approach. (3) Interplay between objective Bayesian and fiducial solutions for covariance estimation. (4) Uncertainty quantification for graphon and regression with network cohesion. (5) Use of deep networks for computation of GFI. (6) Applications of GFI to a wide variety of practical problems; e.g., calibration of likelihood ratios used for quantifying evidence in forensic science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据和它们的使用在现代社会中变得极为重要。这迫切需要研究统计和数据科学的数学基础。在这个项目中,PIS探索了普遍的基准推断与现代数据科学问题和技术的相互作用。拟议的研究有几个好处。首先,预计拟议的研究将增加我们对频繁,信托和贝叶斯范式之间的推论和关系的理解,以及这些范式如何适合数据科学,旨在改善更好的数据科学实践。其次,预计将导致新的有效的程序来量化许多应用程序中的不确定性。一个重要的例子是,法医学中数据科学算法报告的似然比校准对法庭中的似然比实际使用有潜在的影响。此外,该项目将为研究生提供研究机会,尤其是帮助培训该领域的妇女和少数族裔研究生,这对社会有益于社会。在2000年左右,PIS和合作者开始重新研究基督的思想,并在适当的普遍性和难以确定的量化方面发现了Fisher的方法,并发现Fisher的方法解决了许多重要的问题。经过多年的初步调查,该团队能够为该领域的系统研究计划制定一个连贯,经过深思熟虑的计划。 PIS称他们对Fisher的思想的概括是普遍的基准推断(GFI)。 PI现在正在努力应用其GFI方法来处理由于我们能够快速收集大量数据的能力而出现的数据科学问题。特别是PI提议对以下主题进行研究:(1)对GFI基本问题的深入研究,以便可以将其简单地用于流形,限制和惩罚。这对于适用性至关重要。 (2)发展无偏见的基准选择者,因此,通过新颖的偏见方法来诱导基准分布的稀疏性作为最小化问题和无偏见的自然结果。 (3)客观贝叶斯和基准解决方案之间的相互作用以进行协方差估计。 (4)Graphon的不确定性定量和具有网络凝聚的回归。 (5)使用深网计算GFI。 (6)GFI在各种实际问题上的应用;例如,该奖项反映了NSF的法定任务,该奖项反映了NSF的法定任务,并且被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准来评估的。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty quantification for principal component regression
主成分回归的不确定性量化
- DOI:10.1214/21-ejs1837
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Wu, Suofei;Hannig, Jan;Lee, Thomas C.
- 通讯作者:Lee, Thomas C.
Method G: Uncertainty Quantification for Distributed Data Problems Using Generalized Fiducial Inference
方法 G:使用广义基准推理对分布式数据问题进行不确定性量化
- DOI:10.1080/10618600.2021.1923514
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Lai, Randy C.;Hannig, Jan;Lee, Thomas C.
- 通讯作者:Lee, Thomas C.
Technical Comment on “Policy impacts of statistical uncertainty and privacy”
关于“统计不确定性和隐私的政策影响”的技术评论
- DOI:10.1126/science.adf9724
- 发表时间:2023
- 期刊:
- 影响因子:56.9
- 作者:Cui, Yifan;Gong, Ruobin;Hannig, Jan;Hoffman, Kentaro
- 通讯作者:Hoffman, Kentaro
The EAS approach for graphical selection consistency in vector autoregression models
用于向量自回归模型中图形选择一致性的 EAS 方法
- DOI:10.1002/cjs.11726
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Williams, Jonathan P.;Xie, Yuying;Hannig, Jan
- 通讯作者:Hannig, Jan
Comments on “A Gibbs Sampler for a Class of Random Convex Polytopes”
对“一类随机凸多面体的吉布斯采样器”的评论
- DOI:10.1080/01621459.2021.1950002
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Hoffman, Kentaro;Hannig, Jan;Zhang, Kai
- 通讯作者:Zhang, Kai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Hannig其他文献
Tracking of multiple merging and splitting targets: A statistical perspective
跟踪多个合并和分裂目标:统计视角
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
C. Storlie;Thomas C.M. Lee;Jan Hannig;D. Nychka - 通讯作者:
D. Nychka
Dempster-Shafer P-values: Thoughts on an Alternative Approach for Multinomial Inference
Dempster-Shafer P 值:关于多项式推理替代方法的思考
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kentaro Hoffman;Kai Zhang;Tyler H. McCormick;Jan Hannig - 通讯作者:
Jan Hannig
Pivotal methods in the propagation of distributions
分布传播的关键方法
- DOI:
10.1088/0026-1394/49/3/382 - 发表时间:
2012 - 期刊:
- 影响因子:2.4
- 作者:
Chih;Jan Hannig;H. Iyer - 通讯作者:
H. Iyer
Approximating Extremely Large Networks via Continuum Limits
通过连续体极限逼近极大的网络
- DOI:
10.1109/access.2013.2281668 - 发表时间:
2013 - 期刊:
- 影响因子:3.9
- 作者:
Yang Zhang;E. Chong;Jan Hannig;D. Estep - 通讯作者:
D. Estep
Autocovariance Function Estimation via Penalized Regression
通过惩罚回归进行自协方差函数估计
- DOI:
10.1080/10618600.2015.1086356 - 发表时间:
2016 - 期刊:
- 影响因子:2.4
- 作者:
Lina Liao;Cheolwoo Park;Jan Hannig;K. Kang - 通讯作者:
K. Kang
Jan Hannig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Hannig', 18)}}的其他基金
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210337 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Fiducial Inference for Massive Data and High Dimensional Problems
协作研究:海量数据和高维问题的广义基准推理
- 批准号:
1512893 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Generalized Fiducial Inference - An Emerging View
协作研究:广义基准推理 - 一种新兴观点
- 批准号:
1007543 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
ATD: Stochastic algorithms for countering chemical and biological threats
ATD:应对化学和生物威胁的随机算法
- 批准号:
1016441 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Generalized Fiducial Inference for Modern Statistical Problems
现代统计问题的广义基准推断
- 批准号:
0968714 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Generalized Fiducial Inference for Modern Statistical Problems
现代统计问题的广义基准推断
- 批准号:
0707037 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Problems Related to Gaussian Processes
与高斯过程相关的问题
- 批准号:
0504737 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
字典设计理论统一下的广义正交线性调频复用信号应用于水声探测通信一体化的波形设计方法研究
- 批准号:52371352
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
三轴卸荷下深部复合岩石广义应力松弛特性及时效破损机理研究
- 批准号:52304099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义特征值方法的随机时滞系统精确控制研究
- 批准号:62373178
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于广义分数阶算子的火成岩非线性蠕变本构模型及动力学研究
- 批准号:12372010
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
幂零李群上与广义薛定谔算子相关的若干问题研究
- 批准号:12361017
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210388 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
- 批准号:
10416631 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
- 批准号:
10649684 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210337 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100785 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant