Differential inclusions in quasiconformal analysis

拟共形分析中的微分包含体

基本信息

  • 批准号:
    0968756
  • 负责人:
  • 金额:
    $ 10.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

The proposal focuses on weakly differentiable mappings with first-order weak derivatives. This class includes, but is not limited to, quasiconformal and quasiregular mappings. A differential inclusion restricts the essential range of the derivative to a certain set of matrices. Main sources of differential inclusions are differential geometry and the theory of nonlinear partial differential equations. Typically, various notions of convexity and connectedness in the matrix space drive the analysis of existence and regularity of solutions. One of basic questions is which differential inclusions imply local invertibility. Invertibility is often established in two steps: first it is shown that the mapping is discrete and open (that is, a branched cover); the second step is to prove that the branch set is empty. Implementation of each step encounters problems that continue to challenge the available methods of analysis and topology. The proposal also brings the tools of geometric function theory into the field of ordinary differential equations. In the presence of canonical coordinates on the Euclidean space the driving vector field in an autonomous system of differential equations can be identified with a mapping, and the geometry of this mapping turns out to be related to the uniqueness of solution. Thirdly, the techniques introduced in quasiconformal analysis are also effective in the studies of smooth (e.g., harmonic) mappings, which in turn find applications in the theory of minimal surfacesMinimal surfaces are mathematical models of thin films, for instance soap bubbles. Our understanding of their shapes develops through the solution of extremal problems. For example, how far apart can one move two boundary curves of a minimal surface before the surface breaks down? The principal investigator will apply the techniques of geometric function theory to such extremal problems. This approach is not limited to models of thin films and is also relevant in the studies of elastic deformation of solid materials. Another part of the proposal addresses uniqueness and stability of solutions of ordinary differential equations, which are commonplace in physics and engineering. They appear as equations of motion for one or several particles, with the number of particles affecting the dimensionality of the problem and the geometry of vector fields involved. Geometric function theory allows one to establish the uniqueness of a solution in situations where the standard results of the theory of ordinary differential equations do not apply. The PI works with post-docs and graduate students and organizes the Syracuse Analysis Study group.
本文主要研究具有一阶弱导数的弱可微映射。该类包括但不限于拟共形映射和拟正则映射。微分包含将导数的本质范围限制在一定的矩阵集合内。微分夹杂的主要来源是微分几何和非线性偏微分方程理论。通常,矩阵空间中各种凸性和连通性的概念驱动着解的存在性和正则性的分析。其中一个基本问题是,哪些微分包含意味着局部可逆性。可逆性通常分两步建立:首先证明映射是离散和开放的(即分支覆盖);第二步是证明分支集是空的。每个步骤的实现都会遇到一些问题,这些问题继续挑战可用的分析和拓扑方法。该建议还将几何函数理论的工具引入了常微分方程领域。在欧氏空间上存在正则坐标的情况下,微分方程自治系统的驱动向量场可以用一个映射来识别,而这个映射的几何性质与解的唯一性有关。第三,在拟共形分析中引入的技术在光滑(如谐波)映射的研究中也很有效,这反过来又在最小表面理论中找到了应用。最小表面是薄膜的数学模型,例如肥皂泡。我们对它们形状的理解是通过解决极端问题而发展起来的。例如,在曲面破裂之前,一个最小曲面的两条边界曲线可以移动多远?主要研究者将运用几何函数理论的技术来解决这类极值问题。这种方法不仅适用于薄膜模型,也适用于固体材料弹性变形的研究。该提案的另一部分讨论了常微分方程解的唯一性和稳定性,这在物理和工程中是常见的。它们表现为一个或几个粒子的运动方程,粒子的数量影响问题的维度和所涉及的矢量场的几何形状。几何函数理论允许人们在常微分方程理论的标准结果不适用的情况下建立解的唯一性。PI与博士后和研究生合作,并组织雪城大学分析研究小组。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Kovalev其他文献

Transgelin of medial layer of the thoracic aorta and its modifications as a possible autoantigen in the atherosclerotic process
  • DOI:
    10.1016/j.atherosclerosis.2017.06.195
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Radima Zhetisheva;Marina Kovaleva;Inna Kamenihina;T. Isaykina;Maryana Shogenova;Alexander Karpov;Igor Galakhov;Leonid Kovalev;Vladimir Naumov
  • 通讯作者:
    Vladimir Naumov

Leonid Kovalev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Kovalev', 18)}}的其他基金

Lipschitz Analysis in Normed and Metric Spaces
规范空间和度量空间中的 Lipschitz 分析
  • 批准号:
    1764266
  • 财政年份:
    2018
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Continuing Grant
Multi-scale geometry of bi-Lipschitz and quasiconformal maps
双 Lipschitz 和拟共形映射的多尺度几何
  • 批准号:
    1362453
  • 财政年份:
    2014
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Quasisymmetric Maps, Doubling Measures, and Geometry of Banach Spaces
Banach 空间的拟对称映射、加倍测度和几何
  • 批准号:
    0913474
  • 财政年份:
    2008
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Quasisymmetric Maps, Doubling Measures, and Geometry of Banach Spaces
Banach 空间的拟对称映射、加倍测度和几何
  • 批准号:
    0700549
  • 财政年份:
    2007
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant

相似海外基金

In situ quantitative monitoring of water environment chemistry and corrosion evolution of steel matrix around typical composite inclusions under different strains
不同应变下典型复合夹杂物周围钢基体水环境化学和腐蚀演化的原位定量监测
  • 批准号:
    24K17166
  • 财政年份:
    2024
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
  • 批准号:
    2235856
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Study on zircon-hosted melt inclusions from granitoids: new approach to assess chemical evolution of magma and its application to granitoid petrogenesis.
花岗岩中锆石熔体包裹体的研究:评估岩浆化学演化的新方法及其在花岗岩岩石成因中的应用。
  • 批准号:
    22KJ2361
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Constraining nitrogen sources and recycling efficiency in hot subduction zones using fluid inclusions in mineral separates from mafic lavas
利用镁铁质熔岩矿物分离物中的流体包裹体限制热俯冲带的氮源和回收效率
  • 批准号:
    2324745
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Understanding the Fluids Trapped Inside Opaque Minerals of Overprinted Ore Deposits
了解叠印矿床的不透明矿物中截留的流体
  • 批准号:
    22KK0246
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
  • 批准号:
    2235857
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Inverse Design and Mechanics of Hybrid Filler Composites with Solid and Liquid Inclusions
固体和液体夹杂物混合填料复合材料的逆向设计和力学
  • 批准号:
    2306613
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Standard Grant
Neutral Inclusions
中性夹杂物
  • 批准号:
    2905704
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Studentship
The role and significance of vesicular structures in the formation of alpha-synuclein inclusions in multiple system atrophy.
囊泡结构在多系统萎缩中α-突触核蛋白包涵体形成中的作用和意义。
  • 批准号:
    23K06802
  • 财政年份:
    2023
  • 资助金额:
    $ 10.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechano-Instructive Material Inclusions to Direct Meniscus Repair
用于直接半月板修复的力学指导材料夹杂物
  • 批准号:
    10534807
  • 财政年份:
    2022
  • 资助金额:
    $ 10.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了