Lipschitz Analysis in Normed and Metric Spaces
规范空间和度量空间中的 Lipschitz 分析
基本信息
- 批准号:1764266
- 负责人:
- 金额:$ 14.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The notion of distance, or dissimilarity of objects, is ubiquitous in geometry, data analysis, image and signal processing, and other disciplines. Naturally associated to it is the notion of transformations that distort the distances by at most a fixed amount. For example, in order to represent high-dimensional data visually, one needs to reduce the number of dimensions while keeping the distortion of distances low. Another example is image recovery, where the goal is to produce a geometrically natural image (with crisp lines and low noise) that has a small measure of dissimilarity from a given noisy image. Signal recovery by error-correcting codes depends on the concept of distance minimization as well: a corrupted sequence of bits is replaced by the nearest sequence that conforms to the specifications of the encoding. The principal investigator will introduce graduate and undergraduate students to these concepts and associated research problems.The project aims to advance the understanding of the Lipschitz geometry of metric spaces, focusing on their embeddings, retractions, and bi-Lipschitz equivalence. It aims to solve open problems concerning the possibility of retracting finite subset spaces onto each other; the process of symmetrizing and extending bi-Lipschitz maps with linear control of their distortion, the feasibility of robust recovery of a vector from the absolute values of its frame coefficients, the geometry of removable sets and quasi-convex sets, and the relation of low-dimensional representations of a metric space with the geometry of its tight span. An array of methods from analysis, geometry, and geometric measure theory will be employed, such as gradient flows on metric spaces and probability measures supported on them, comparison estimates on spaces with curvature bounds, constructive methods of geometric mapping theory, and the calculus of variations as applied to geometrically motivated problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
距离或物体的不相似性的概念在几何、数据分析、图像和信号处理以及其他学科中无处不在。自然地,与之相联系的是变换的概念,它使距离至多扭曲一个固定的量。例如,为了直观地表示高维数据,需要减少维数,同时保持距离的低失真。另一个例子是图像恢复,其目标是生成几何上自然的图像(具有清晰的线条和低噪声),与给定的噪声图像具有很小的差异。纠错码的信号恢复也依赖于距离最小化的概念:损坏的比特序列被最近的符合编码规范的序列所取代。首席研究员将向研究生和本科生介绍这些概念和相关的研究问题。该项目旨在推进对度量空间的李普希茨几何的理解,重点是它们的嵌入、撤回和双李普希茨等价。它的目的是解决有关有限子集空间相互缩回的可能性的开放问题;线性控制双lipschitz映射的对称和扩展过程,向量从其框架系数的绝对值鲁棒恢复的可行性,可移动集和拟凸集的几何,度量空间的低维表示与其紧跨几何的关系。一系列的方法从分析,几何,几何测量理论将被采用,如梯度流的度量空间和支持它们的概率测度,曲率边界的空间的比较估计,几何映射理论的构造方法,以及变分法应用于几何动机的问题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fourier Series of Circle Embeddings
圆嵌入的傅立叶级数
- DOI:10.1007/s40315-019-00263-2
- 发表时间:2019
- 期刊:
- 影响因子:2.1
- 作者:Kovalev, Leonid V.;Yang, Xuerui
- 通讯作者:Yang, Xuerui
Optimal extension of Lipschitz embeddings in the plane
Lipschitz 嵌入在平面中的最佳扩展
- DOI:10.1112/blms.12255
- 发表时间:2019
- 期刊:
- 影响因子:0.9
- 作者:Kovalev, Leonid V.
- 通讯作者:Kovalev, Leonid V.
Extreme values of the derivative of Blaschke products and hypergeometric polynomials
Blaschke 乘积和超几何多项式的导数的极值
- DOI:10.1016/j.bulsci.2021.102979
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kovalev, Leonid V.;Yang, Xuerui
- 通讯作者:Yang, Xuerui
Continuity of logarithmic capacity
对数容量连续性
- DOI:10.1016/j.jmaa.2021.125585
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Kalmykov, Sergei;Kovalev, Leonid V.
- 通讯作者:Kovalev, Leonid V.
Circle embeddings with restrictions on Fourier coefficients
傅立叶系数限制的圆嵌入
- DOI:10.1016/j.jmaa.2020.124083
- 发表时间:2020
- 期刊:
- 影响因子:1.3
- 作者:Li, Liulan;Kovalev, Leonid V.
- 通讯作者:Kovalev, Leonid V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Kovalev其他文献
Transgelin of medial layer of the thoracic aorta and its modifications as a possible autoantigen in the atherosclerotic process
- DOI:
10.1016/j.atherosclerosis.2017.06.195 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:
- 作者:
Radima Zhetisheva;Marina Kovaleva;Inna Kamenihina;T. Isaykina;Maryana Shogenova;Alexander Karpov;Igor Galakhov;Leonid Kovalev;Vladimir Naumov - 通讯作者:
Vladimir Naumov
Leonid Kovalev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Kovalev', 18)}}的其他基金
Multi-scale geometry of bi-Lipschitz and quasiconformal maps
双 Lipschitz 和拟共形映射的多尺度几何
- 批准号:
1362453 - 财政年份:2014
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
Differential inclusions in quasiconformal analysis
拟共形分析中的微分包含体
- 批准号:
0968756 - 财政年份:2010
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
Quasisymmetric Maps, Doubling Measures, and Geometry of Banach Spaces
Banach 空间的拟对称映射、加倍测度和几何
- 批准号:
0913474 - 财政年份:2008
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
Quasisymmetric Maps, Doubling Measures, and Geometry of Banach Spaces
Banach 空间的拟对称映射、加倍测度和几何
- 批准号:
0700549 - 财政年份:2007
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
- 批准号:
10089592 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
- 批准号:
ES/Y004906/1 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant