Collaborative Research: CSEDI--Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions

合作研究:CSEDI--深地条件下塑性变形实验研究的重大挑战

基本信息

  • 批准号:
    0968823
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The main goal of this joint project is to further develop the experimental techniques of studying plastic deformation under deep Earth conditions. When a large force (stress) is applied to minerals or rocks under shallow Earth conditions, they will be deformed by brittle fracture. In the deep interior of Earth, temperature is higher and then plastic deformation becomes possible. This plastic deformation helps material circulation by convection that cools Earth and causes most of geological activities including mountain building and deep circulation of water and other materials. However, to date very little is known on the plastic flow properties of materials under deep Earth conditions due mainly to the technical difficulties. For example, in the deep interior of Earth, not only is temperature high, but also pressure is high. Usually pressure suppresses atomic motion and hence plastic deformation becomes difficult under high-pressure conditions. Does the role of pressure become more important than temperature and hence the viscosity of materials increases with depth? Also most of minerals undergo a series of phase transformations. How do these phase transformations affect the plastic properties? These issues are critical to our understanding of the dynamics and evolution of Earth and other terrestrial planets. Despite its importance, almost nothing was known about these deep earth deformation as recently as ~ten years ago. Recognizing this need, the investigators started a group effort to develop new techniques of plastic deformation under deep Earth conditions in 2002. Based on the studies during the previous funding periods, they have made major progress including the development of new types of deformation apparatus and the improvements to the stress (and strain) measurements using synchrotron x-ray sources. As a result, we can now conduct quantitative deformation experiments to ~20 GPa and ~2000 K. However, these conditions correspond only to the depth of ~500 km. Earth's mantle extends to ~2900 km. Also, there has been very poor control of water content in materials previously studied. In this new phase of technical development, the team of investigators will focus on (i) extending the maximum pressure to ~30 GPa and higher (~1000 km depth), (ii) improving the control of chemical environment (such as water fugacity) under high-pressure conditions, and (iii) improving the stress measurements through the use of new hardware and theory. These developments will allow investigation of the plastic properties of Earth materials to the conditions equivalent to the shallow part of the lower mantle under well-controlled chemical environment. Applications of these techniques will shed important new light into our understanding of dynamics of whole Earth. The project is a collaboration among teams at four institutions, and will provide enhanced infrastructure to the experimental geophysics community, including new facilities at national synchrotron beamlines that will be available to the broader community. The developments will include training and mentoring of graduate students and post doctoral scholars.
这一联合项目的主要目标是进一步发展研究深层地球条件下塑性变形的实验技术。当在浅层地球条件下对矿物或岩石施加很大的力(应力)时,它们会发生脆性断裂变形。在地球内部深处,温度较高,塑性变形成为可能。这种塑性变形通过对流帮助物质循环,使地球冷却,并引起大部分地质活动,包括造山运动以及水和其他物质的深层循环。 然而,到目前为止,很少有人知道的材料的塑性流动性能在地球深部条件下,主要是由于技术上的困难。例如,在地球内部深处,不仅温度高,而且压力也很高。通常压力抑制原子运动,因此在高压条件下塑性变形变得困难。压力的作用是否变得比温度更重要,因此材料的粘度随深度增加?大多数矿物也经历了一系列的相变。这些相变是如何影响塑性的?这些问题对于我们理解地球和其他类地行星的动力学和演化至关重要。尽管它很重要,但直到大约十年前,人们对这些地球深部的形变几乎一无所知。认识到这一需要,研究人员于2002年开始了一项小组工作,以开发在地球深部条件下塑性变形的新技术。在前几个资助期的研究基础上,他们取得了重大进展,包括开发了新型变形仪器和改进了使用同步加速器X射线源的应力(和应变)测量。因此,我们现在可以进行定量变形实验~20 GPa和~2000 K。然而,这些条件仅对应于~500 km的深度。地球的地幔延伸到~2900公里。此外,以前研究的材料中的水含量控制非常差。在这一新的技术开发阶段,研究团队将重点关注(i)将最大压力扩展到~30 GPa及更高(~1000 km深度),(ii)改善高压条件下化学环境(如水逸度)的控制,以及(iii)通过使用新的硬件和理论改进应力测量。这些发展将允许在控制良好的化学环境下,在相当于下地幔浅部的条件下研究地球材料的塑性特性。这些技术的应用将为我们理解整个地球的动力学提供重要的新线索。 该项目是四个机构的团队之间的合作,将为实验电子物理学界提供增强的基础设施,包括将向更广泛的社区提供的国家同步加速器光束线的新设施。这些发展将包括培训和指导研究生和博士后学者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Weidner其他文献

Composition of Mars constrained using geophysical observations and mineral physics modeling
使用地球物理观测和矿物物理建模约束火星的成分

Donald Weidner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Weidner', 18)}}的其他基金

Rheology of Multi-Phase Mantle Rocks to 800 km Depth
800 公里深度多相地幔岩石的流变学
  • 批准号:
    1953849
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Effect of Partial Melting on Elastic Properties of Rocks at Mantle Conditions
地幔条件下部分熔融对岩石弹性特性的影响
  • 批准号:
    1809165
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Rheology of Lower Mantle Perovskites
下地幔钙钛矿的流变学
  • 批准号:
    1547556
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: Rheology of the Earth's Transition Zone - An Integrated Approach
合作研究:地球过渡带的流变学 - 综合方法
  • 批准号:
    1606793
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
CSEDI合作研究:深地条件下塑性变形实验研究的巨大挑战
  • 批准号:
    1361463
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Partial Melting at Mantle Conditions: Effect on Elastic, Anelastic, and Plastic Behavior
地幔条件下的部分熔融:对弹性、非弹性和塑性行为的影响
  • 批准号:
    1141895
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
In situ Study of Lattice Preferred Orientation at Mantle Conditions
地幔条件下晶格择优取向的原位研究
  • 批准号:
    1045629
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Undergraduate Research Experiences in High Pressure Geophysics
高压地球物理学本科生研究经历
  • 批准号:
    0754233
  • 财政年份:
    2008
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CSEDI--Grand Challenge for Experimental Study of Plastic Deformation Under Deep Earth Conditions
合作研究:CSEDI--深地条件下塑性变形实验研究的重大挑战
  • 批准号:
    0652887
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Rheology of Mantle Rocks at High Pressure
高压下地幔岩石的流变学
  • 批准号:
    0711365
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2154072
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153688
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054884
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054964
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102571
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102777
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054912
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054876
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054993
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了