CSEDI: Thermal conductivity of lower mantle minerals and heat flow across the core/mantle boundary

CSEDI:下地幔矿物的热导率和穿过核/地幔边界的热流

基本信息

  • 批准号:
    0969033
  • 负责人:
  • 金额:
    $ 34.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

The heat flow across the Earth's core-mantle boundary controls the thermal evolution of the whole Earth, which is ultimately expressed on the surface by plate tectonics. However the thermal properties of the core/mantle boundary are not well known, leading to significant uncertainties in our understanding of the temperature and heat profile of the Earth - both currently and in the past. The goal of this proposal is to determine the thermal properties -especially thermal conductivity- of the Earth's mantle, through a combination of experiment and modeling. This information will be used to help constrain the temperature profile throughout the Earth's interior, the style of mantle convection, and the timing for the growth of the inner core. We will combine methods from theoretical and experimental mineral physics and heat flow modeling in crystalline bulk and in composite materials to measure the thermal conductivity of the deep Earth. Starting with a data set describing the lattice thermal conductivity of MgO and MgSiO3 at deep mantle conditions, we will measure how the presence and behavior of iron changes those values at high pressures and temperatures. The experimental data will be interpreted with help from computational models of heat flow in the laser-heated diamond cell, used to make these measurements. Finally, we examine the implications for the mantle using a heat flow model for composite materials and including both conduction and radiation. The overall outcome will be an estimate of the thermal conductivity of the lower mantle at core/mantle boundary conditions, and how the thermal conductivity varies with pressure, temperature, and composition. This project brings together two scientists from very different disciplines: a mechanical engineer with expertise in heat transfer and a geophyscist with expertise in measurements of physical properties under extreme conditions. This interdisciplinary project will support the training of a graduate student for three years. In addition, this project will support summer research for undergraduates at UCLA. Measurements of thermal properties of materials under extreme conditions are important not only for Earth & planetary science, but also for engineering, materials science, and physics. Both researchers are actively involved in science education and outreach at all levels, and have active research groups including undergraduate and graduate students, and postdoctoral scholars.
穿过地球核幔边界的热流控制着整个地球的热演化,并最终通过板块构造在地表表现出来。 然而,地核/地幔边界的热特性并不为人所知,这导致我们对地球温度和热量分布的理解存在很大的不确定性-无论是现在还是过去。该提案的目标是通过实验和建模相结合来确定地球地幔的热特性,特别是热导率。这些信息将被用来帮助限制整个地球内部的温度分布,地幔对流的风格,以及内核生长的时间。 我们将结合联合收割机的方法,从理论和实验矿物物理学和热流模型在晶体块和复合材料,以测量地球深部的导热率。 从描述MgO和MgSiO 3在深地幔条件下的晶格热导率的数据集开始,我们将测量铁的存在和行为如何在高压和高温下改变这些值。实验数据将被解释的帮助下,从计算模型的热流在激光加热的金刚石细胞,用于使这些测量。 最后,我们研究的影响,地幔使用复合材料的热流模型,包括传导和辐射。总体结果将是在核/幔边界条件下地幔热导率的估计,以及热导率如何随压力,温度和成分而变化。该项目汇集了两名来自不同学科的科学家:一名具有传热专业知识的机械工程师和一名具有极端条件下物理特性测量专业知识的地球物理学家。这个跨学科项目将支持研究生的培训三年。 此外,该项目将支持加州大学洛杉矶分校本科生的夏季研究。 在极端条件下测量材料的热性质不仅对地球行星科学很重要,而且对工程,材料科学和物理学也很重要。两位研究人员都积极参与各级科学教育和推广活动,并拥有活跃的研究小组,包括本科生和研究生以及博士后学者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abby Kavner其他文献

Modeling Three-Dimensional Upper Mantle Seismic Anisotropy with Higher Mode Surface Waves
用高模表面波模拟三维上地幔地震各向异性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Yuan;Frederic R. Paik Schoenberg;Abby Kavner;P. M. Davis
  • 通讯作者:
    P. M. Davis
Hardening in Tungsten Tetraboride with the Addition of Carbon, Zirconium, and Silicon: Intrinsic vs Extrinsic Effects
添加碳、锆和硅的四硼化钨的硬化:内在效应与外在效应
  • DOI:
    10.1021/acs.chemmater.3c03092
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    G. Akopov;Shanling Hu;K. D. Shumilov;Spencer G. Hamilton;Lisa E. Pangilinan;Zerina Mehmedović;Hang Yin;Paul J. Robinson;Inwhan Roh;Abby Kavner;A. Alexandrova;Sarah H. Tolbert;R. Kaner
  • 通讯作者:
    R. Kaner

Abby Kavner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abby Kavner', 18)}}的其他基金

Measurement of Thermal conductivity of mantle and core materials and implications for the thermal history of the Earth
地幔和核心材料热导率的测量及其对地球热史的影响
  • 批准号:
    1522560
  • 财政年份:
    2015
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Continuing Grant
Harnessing Sample Geometry to Measure Equation of State of Deep Earth Minerals
利用样本几何形状测量地球深处矿物的状态方程
  • 批准号:
    0440332
  • 财政年份:
    2005
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Measurements of Thermal Conductivity of Deep Earth Minerals
地球深部矿物热导率的测量
  • 批准号:
    0510914
  • 财政年份:
    2005
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Development of a High Pressure Mineral Physics and Chemistry Laboratory at UCLA
加州大学洛杉矶分校高压矿物物理和化学实验室的发展
  • 批准号:
    0318488
  • 财政年份:
    2004
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
CSEDI: Cooperative Studies of Electrochemistry at the Core-Mantle Boundary
CSEDI:核幔边界电化学合作研究
  • 批准号:
    0334872
  • 财政年份:
    2003
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Participant Support for IUCr/COMPRES Meeting, Dec. 2003, San Francisco, CA
IUCr/COMPRES 会议参与者支持,2003 年 12 月,加利福尼亚州旧金山
  • 批准号:
    0402379
  • 财政年份:
    2003
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
CSEDI: Cooperative Studies of Electrochemistry at the Core-Mantle Boundary
CSEDI:核幔边界电化学合作研究
  • 批准号:
    0112448
  • 财政年份:
    2001
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
  • 批准号:
    51806227
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
  • 批准号:
    23KJ0893
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
  • 批准号:
    EP/W034751/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Research Grant
I-Corps: High thermal conductivity polymers and phase change materials based on graphene
I-Corps:基于石墨烯的高导热聚合物和相变材料
  • 批准号:
    2330247
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Standard Grant
Phonon-engineered extreme thermal conductivity of two-dimensional heterostructures
二维异质结构的声子工程极限导热率
  • 批准号:
    22KF0102
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
  • 批准号:
    EP/W035510/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Research Grant
Development of In-plane thermal conductivity measurement of thin film for realizing a consistent evaluation of thermoelectric performance of thin film
开发薄膜面内热导率测量以实现薄膜热电性能的一致评估
  • 批准号:
    23H01361
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Targeted Temperature Modulation with Smart Radiometric Monitoring for Effective and Long-Lasting Opioid-Free Pelvic Pain Relief - A Novel Low-Cost, Portable, Tampon-sized Thermal Transfer Device.
通过智能辐射监测进行有针对性的温度调节,可有效且持久地缓解无阿片类药物的盆腔疼痛 - 一种新型低成本、便携式、卫生棉条大小的热转印设备。
  • 批准号:
    10760002
  • 财政年份:
    2023
  • 资助金额:
    $ 34.6万
  • 项目类别:
Development of a novel high-strength graphene reinforced aluminum matrix composite with enhanced thermal conductivity
开发一种新型高强度石墨烯增强导热铝基复合材料
  • 批准号:
    559982-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developments of neutron scattering, NMR, and thermal conductivity measurement techniques for the investigations of quantum phases in high magnetic fields
用于研究高磁场中量子相的中子散射、核磁共振和热导率测量技术的发展
  • 批准号:
    22H00104
  • 财政年份:
    2022
  • 资助金额:
    $ 34.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了