Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
基本信息
- 批准号:EP/W035510/1
- 负责人:
- 金额:$ 50.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Thermal management and heat dissipation have become the main technological challenges for the next generation of electronic and photonic devices. Heat generated by any electronic device must be effectively dissipated to improve performance, reliability and prevent premature failures. There is an urgent need for novel electronic materials with a high thermal conductivity. Presently there are only a very limited number of cost-effective and reliable high thermal conductivity materials which can be used in electronic devices, including for passive cooling. The ideal material is diamond, with a thermal conductivity as large as 2300 W/mK. However, it is costly to produce, and there is a mismatch between diamond's coefficient of thermal expansion and majority of semiconductors. Copper (~400 W/mK) and its alloys for example with tungsten, and aluminium (~200 W/mK) remain the most widely used materials for heat dissipation in current electronic devices.Boron arsenide (BAs) is a semiconductor with a band gap of ~1.5 eV. Interest in the BAs system has been reignited by recent theoretical predictions that BAs has an ultrahigh thermal conductivity, comparable to that of diamond. In 2018 three groups independently reported the growth of BAs microcrystals with a thermal conductivity close to diamond. It has been demonstrated that BAs-microcrystal cooling substrates allow to exhibit substantially lower hot-spot temperatures in GaN transistors due to their unique phonon band structures and interface matching, beyond those when using diamond and silicon carbide substrates. This illustrates the potential for using BAs in the thermal management of electronics, however, present BAs crystals are only a few mm in size. Furthermore, due to its beneficial electronic properties, BAs is not only attractive for passive cooling of electronics such as GaN, but also by itself a very promising novel material to be transformative for electronic and photovoltaic devices. Now the main challenge in realising the potential of this novel material is to develop a scalable technology of high-quality BAs layers.Boron nitride (BN) exists in several structural polytypes. Hexagonal boron nitride (hBN) polytype, graphite-like, is thermodynamically the most stable phase and presently the most widely explored polytype. The lamellar crystal structure made hBN one of a major 2D material. However, of even greater interest is the much less explored cubic structural polytype of BN - zinc-blende (cBN). cBN does not have a laminar structure and could be more easily integrated with standard semiconductor device heterostructures. Cubic boron nitride is a semiconductor with much larger bandgap energy of ~6.4 eV, which makes it a very important new material for potential deep ultraviolet (DUV) light-emitting and power electronic applications. cBN also has a very good isotropic thermal conductivity and therefore has high potential in heat sink devices. The first cBN bulk microcrystals were recently demonstrated. However, a scalable technology for cBN layers is not yet developed.This project will develop a transformative scalable technology for the boron-based semiconductors, which promise to revolutionize the areas of power electronics and photonics. Boron-based materials, including boron arsenide (BAs), cubic boron nitride (cBN) and highly mismatched BNAs alloy layers, will enable a wide optical range from infrared (IR) to deep ultraviolet (DUV) for photonics and will allow layers with high thermal conductivity. High breakdown fields will allow their applications in power electronics. Our vision is that molecular beam epitaxy (MBE) provides the most promising route to the scalable growth of the cubic boron-based semiconductors. This will be the first project world-wide enabling scalable high thermal conductivity boron-based layers using MBE as main growth method.
热管理和散热已成为下一代电子和光子器件的主要技术挑战。任何电子设备产生的热量都必须有效地消散,以提高性能,可靠性并防止过早失效。因此,迫切需要具有高热导率的新型电子材料。目前,只有非常有限数量的具有成本效益且可靠的高导热率材料可用于电子设备,包括用于被动冷却。理想的材料是金刚石,其热导率高达2300 W/mK。然而,它的生产成本很高,而且金刚石的热膨胀系数与大多数半导体之间存在不匹配。铜(~400 W/mK)及其合金(例如与钨的合金)和铝(~200 W/mK)仍然是当前电子器件中最广泛使用的散热材料。最近的理论预测表明,BAs具有与金刚石相当的热导率,这重新点燃了对BAs系统的兴趣。2018年,三个研究小组独立报道了BAs微晶的生长,其热导率接近金刚石。已经证明,由于其独特的声子带结构和界面匹配,BA-微晶冷却衬底允许在GaN晶体管中表现出显著更低的热点温度,超出了使用金刚石和碳化硅衬底时的那些。这说明了在电子设备的热管理中使用BA的潜力,然而,目前的BA晶体的尺寸仅为几mm。此外,由于其有益的电子特性,BAs不仅对GaN等电子产品的被动冷却有吸引力,而且本身也是一种非常有前途的新型材料,可用于电子和光伏器件的变革。现在,实现这种新型材料潜力的主要挑战是开发一种可扩展的高质量BAs层技术。氮化硼(BN)存在于几种结构多型体中。六方氮化硼(hBN)多型体,石墨状,是结晶学上最稳定的相,目前是最广泛开发的多型体。层状晶体结构使hBN成为主要的2D材料之一。然而,更令人感兴趣的是较少探索的BN -锌-尖晶石(cBN)的立方结构多型体。cBN不具有层状结构,并且可以更容易地与标准半导体器件异质结构集成。立方氮化硼是一种具有更大带隙能量(~6.4 eV)的半导体材料,这使其成为一种非常重要的新型材料,具有潜在的深紫外(DUV)发光和电力电子应用前景。cBN还具有非常好的各向同性热导率,因此在散热器器件中具有很高的潜力。最近展示了第一个cBN大块微晶。然而,cBN层的可扩展技术尚未开发。该项目将为硼基半导体开发一种变革性的可扩展技术,有望彻底改变电力电子和光子学领域。硼基材料,包括砷化硼(BAs)、立方氮化硼(cBN)和高度失配的BNAs合金层,将使光子学能够实现从红外(IR)到深紫外(DUV)的宽光学范围,并将使层具有高热导率。高击穿场强将使其在电力电子领域得到应用。我们的愿景是,分子束外延(MBE)提供了最有前途的路线,可扩展的立方硼基半导体的生长。这将是全球第一个使用MBE作为主要生长方法实现可扩展的高热导率硼基层的项目。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergei Novikov其他文献
A method for studying responses and habituation to odors in rats.
一种研究大鼠对气味的反应和习惯的方法。
- DOI:
- 发表时间:
1982 - 期刊:
- 影响因子:0
- 作者:
Hkan Sundberg;K. Døving;Sergei Novikov;H. Ursin - 通讯作者:
H. Ursin
Two new magnesium and magnesium-lead fluorogermanates and revision of the Mg<sub>28</sub>Ge<sub>7.5</sub>O<sub>38</sub>F<sub>10</sub> phase
- DOI:
10.1016/j.jssc.2020.121741 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Sergei Novikov;Rabaya Bagum;Z. Blossom Yan;J. Patrick Clancy;Yurij Mozharivskyj - 通讯作者:
Yurij Mozharivskyj
P22-3 Comparison of diagnostic characteristics between sentinel-node biopsy (SNB) and SNB with lymph node sampling in patients with oral tongue cancer cT1-2NOMO
- DOI:
10.1016/j.annonc.2021.05.714 - 发表时间:
2021-07-01 - 期刊:
- 影响因子:
- 作者:
Maxim Kotov;Zamira Radzhabova;Sergei Novikov - 通讯作者:
Sergei Novikov
Sergei Novikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergei Novikov', 18)}}的其他基金
Growth of hexagonal boron nitride for deep ultraviolet photonics, quantum emitters and van der Waals substrates
用于深紫外光子学、量子发射器和范德华基底的六方氮化硼的生长
- 批准号:
EP/V05323X/1 - 财政年份:2021
- 资助金额:
$ 50.94万 - 项目类别:
Research Grant
Molecular Beam Epitaxy of Boron Nitride and Graphene layers and heterostructures.
氮化硼和石墨烯层和异质结构的分子束外延。
- 批准号:
EP/L013908/1 - 财政年份:2014
- 资助金额:
$ 50.94万 - 项目类别:
Research Grant
Free-standing wurtzite AlGaN substrates for deep ultraviolet (DUV) devices.
用于深紫外 (DUV) 器件的独立式纤锌矿 AlGaN 衬底。
- 批准号:
EP/K008323/1 - 财政年份:2013
- 资助金额:
$ 50.94万 - 项目类别:
Research Grant
Amorphous and crystalline GaNAs alloys for solar energy conversion devices
用于太阳能转换装置的非晶态和晶态 GaN 合金
- 批准号:
EP/I004203/1 - 财政年份:2011
- 资助金额:
$ 50.94万 - 项目类别:
Research Grant
Free-standing zinc-blende (cubic) GaN, AlN and AlGaN layers grown by molecular beam epitaxy
通过分子束外延生长的独立式闪锌矿(立方)GaN、AlN 和 AlGaN 层
- 批准号:
EP/G046867/1 - 财政年份:2009
- 资助金额:
$ 50.94万 - 项目类别:
Research Grant
Feasibility study of plasma-assisted electroepitaxy for the growth of GaN layers and bulk crystals
等离子体辅助电外延生长 GaN 层和块状晶体的可行性研究
- 批准号:
EP/G030634/1 - 财政年份:2009
- 资助金额:
$ 50.94万 - 项目类别:
Research Grant
Feasibility study of growth by MBE of As doped GaN layers for photoanode applications in hydrogen production by photoelectrochemical water splitting
通过 MBE 生长掺砷 GaN 层的可行性研究,用于光电化学水分解制氢中光电阳极应用
- 批准号:
EP/G007160/1 - 财政年份:2008
- 资助金额:
$ 50.94万 - 项目类别:
Research Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
$ 50.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FuSe-TG: Co-Design of Germanium Oxide-based Semiconductors from Deposition to Devices
FuSe-TG:氧化锗基半导体从沉积到器件的协同设计
- 批准号:
2235208 - 财政年份:2023
- 资助金额:
$ 50.94万 - 项目类别:
Standard Grant
Laser particles-based spatiotemporal and dynamic single-cell multiomics
基于激光粒子的时空和动态单细胞多组学
- 批准号:
10723601 - 财政年份:2023
- 资助金额:
$ 50.94万 - 项目类别:
A Smart Semiconductor based Integrated Continuous Diabetes Monitoring Platform
基于智能半导体的集成连续糖尿病监测平台
- 批准号:
10900360 - 财政年份:2023
- 资助金额:
$ 50.94万 - 项目类别:
Direct growth of ternary or higher arsenide-based semiconductors on Si(001) epitaxial substrates
在 Si(001) 外延衬底上直接生长三元或更高砷化物基半导体
- 批准号:
23K04598 - 财政年份:2023
- 资助金额:
$ 50.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermoradiative Energy Conversion Devices Based on Narrow Bandgap Antimonide Semiconductors
基于窄带隙锑化物半导体的热辐射能量转换器件
- 批准号:
2317609 - 财政年份:2023
- 资助金额:
$ 50.94万 - 项目类别:
Standard Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
- 批准号:
EP/W034751/1 - 财政年份:2023
- 资助金额:
$ 50.94万 - 项目类别:
Research Grant
A Smart Semiconductor based Integrated Continuous Diabetes Monitoring Platform
基于智能半导体的集成连续糖尿病监测平台
- 批准号:
10589708 - 财政年份:2023
- 资助金额:
$ 50.94万 - 项目类别:
Spin-photon interfaces based on isoelectronic centers in semiconductors
基于半导体等电子中心的自旋光子界面
- 批准号:
RGPIN-2017-06284 - 财政年份:2022
- 资助金额:
$ 50.94万 - 项目类别:
Discovery Grants Program - Individual
Wearable, Graphene-based Flexible Sensors for Chronic Monitoring of Venous Thromboembolism for High-Risk Patients
用于长期监测高危患者静脉血栓栓塞的可穿戴石墨烯柔性传感器
- 批准号:
10505269 - 财政年份:2022
- 资助金额:
$ 50.94万 - 项目类别: