LOCAL-GLOBAL INTERACTION IN NONCOMMUTATIVE GEOMETRY
非交换几何中的局部全局相互作用
基本信息
- 批准号:0969672
- 负责人:
- 金额:$ 23.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTThe foremost objective of this project is to extend the local representation of thecharacteristic classes of noncommutative spaces to the more intricate spaces described by the spectral triples of type III introduced by Connes and the PI. The resulting local-global theory will be applied to the transverse geometry offoliations, to modular forms, Hecke operators and Rankin-Cohen brackets, and to the refinement of the mathematical formulation of the standard model of particle physics. In the process, the Hopf cyclic theory of characteristic classes for foliations will be extended to all classical types of transverse geometries. In a different direction, the concept of boundary will be incorporated in the spectral triple approach, and the characteristic classes of the noncommutative spaces with boundary will be developed by means of relative cyclic cohomology. In various branches of science, the concepts of local and global form two markedly different but coexisting facets of a theory, which are often correlated in an interesting way by a local-global principle. The present project will develop newtools for the implementation of this principle in the setting of noncommutative geometry, a modern variant of geometry inspired by quantum mechanics whichallows for non-commuting operator-valued coordinates. Although this feature precludes ab initio any naive spatial conceptualization based on points, there is a more subtle interpretation of the notion of locality, inspired by the Bohr correspondence principle in quantum mechanics, which will be fully exploited. The proposed work will engender new connections between several fields of mathematics and physics, thus stimulating their mutually enriching interaction.
这个项目的首要目标是将非对易空间的特征类的局部表示推广到由Connes和Pi引入的III型谱三元组所描述的更复杂的空间。由此产生的局部-整体理论将被应用于横向几何分离、模形式、Hecke算符和Rankin-Cohen括号,并用于改进粒子物理标准模型的数学公式。在这个过程中,关于叶理特征类的Hopf循环理论将推广到所有经典类型的横向几何。在不同的方向上,将边界的概念引入到谱三重方法中,并利用相对循环上同调的方法来发展有边界的非对易空间的特征类。在不同的科学分支中,局部和全局的概念形成了理论的两个明显不同但共存的方面,这两个方面往往通过局部-全局原理以一种有趣的方式联系在一起。本项目将为在非对易几何的背景下实现这一原则开发新的工具,非对易几何是受量子力学启发的一种现代几何变体,它为非对易算符值坐标喝彩。虽然这一特征排除了从头开始任何基于点的天真的空间概念化,但受量子力学中的玻尔对应原理的启发,对局域性概念有更微妙的解释,这一点将得到充分利用。这项拟议的工作将在数学和物理的几个领域之间产生新的联系,从而促进它们相互丰富的互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henri Moscovici其他文献
Cocycle representations of solvable Lie groups
- DOI:
10.1007/bf01214268 - 发表时间:
1978-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Henri Moscovici;Andrei Verona - 通讯作者:
Andrei Verona
A reciprocity theorem for unitary representations of Lie groups
- DOI:
10.1007/bf02787569 - 发表时间:
1973-09-01 - 期刊:
- 影响因子:0.800
- 作者:
Henri Moscovici - 通讯作者:
Henri Moscovici
Index pairing with Alexander–Spanier cocycles
- DOI:
10.1016/j.geomphys.2018.07.011 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:
- 作者:
Alexander Gorokhovsky;Henri Moscovici - 通讯作者:
Henri Moscovici
Eigenvalue Inequalities and Poincar\'{e} Duality in Noncommutative Geometry
- DOI:
10.1007/s002200050076 - 发表时间:
1997-05-01 - 期刊:
- 影响因子:2.600
- 作者:
Henri Moscovici - 通讯作者:
Henri Moscovici
Coherent state representations of nilpotent Lie groups
- DOI:
10.1007/bf01609836 - 发表时间:
1977-02-01 - 期刊:
- 影响因子:2.600
- 作者:
Henri Moscovici - 通讯作者:
Henri Moscovici
Henri Moscovici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henri Moscovici', 18)}}的其他基金
Global and Local Noncommutative Geometry
全局和局部非交换几何
- 批准号:
1600541 - 财政年份:2016
- 资助金额:
$ 23.02万 - 项目类别:
Continuing Grant
Local and global invariants in Noncommutative Geometry
非交换几何中的局部和全局不变量
- 批准号:
1300548 - 财政年份:2013
- 资助金额:
$ 23.02万 - 项目类别:
Continuing Grant
FRG Collaborative Research: Noncommutative Geometry and Number Theory
FRG 合作研究:非交换几何与数论
- 批准号:
0652167 - 财政年份:2007
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
Research in Noncommutative and Transverse Geometry
非交换几何和横向几何研究
- 批准号:
0245481 - 财政年份:2003
- 资助金额:
$ 23.02万 - 项目类别:
Continuing grant
Noncommutative geometry and quantum symmetry
非交换几何和量子对称性
- 批准号:
9988487 - 财政年份:2000
- 资助金额:
$ 23.02万 - 项目类别:
Continuing grant
Mathematical Sciences: Studies in Non-Commutative Geometry
数学科学:非交换几何研究
- 批准号:
9401192 - 财政年份:1994
- 资助金额:
$ 23.02万 - 项目类别:
Continuing grant
Mathematical Sciences: Cyclic Homology, Higher Indices and Secondary Invariants
数学科学:循环同调、高阶指数和二次不变量
- 批准号:
9101557 - 财政年份:1991
- 资助金额:
$ 23.02万 - 项目类别:
Continuing grant
Mathematical Sciences: Non-Commutative Harmonic Analysis
数学科学:非交换调和分析
- 批准号:
8802072 - 财政年份:1988
- 资助金额:
$ 23.02万 - 项目类别:
Continuing grant
Contributions to the Study of the Non-Commutative Chern Character
对陈氏非交换性特征研究的贡献
- 批准号:
8701845 - 财政年份:1987
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
Simulation studies of the interaction between turbulent and neoclassical transport in three-dimensional magnetic plasma based on the global first principle model
基于全局第一性原理模型的三维磁等离子体中湍流与新古典输运相互作用的模拟研究
- 批准号:
23K03364 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
Effect of genetic background on global protein-protein interaction network in yeast
遗传背景对酵母全局蛋白质-蛋白质相互作用网络的影响
- 批准号:
550420-2020 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
University Undergraduate Student Research Awards
The Expedit-Isotopomeric CrossLinking Mass Spectrometry (Expedit-ICLMS) technology for mapping global and dynamic protein-protein interaction networks
用于绘制全局和动态蛋白质-蛋白质相互作用网络的快速同位素交联质谱 (Expedit-ICLMS) 技术
- 批准号:
10596082 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
The Expedit-Isotopomeric CrossLinking Mass Spectrometry (Expedit-ICLMS) technology for mapping global and dynamic protein-protein interaction networks
用于绘制全局和动态蛋白质-蛋白质相互作用网络的快速同位素交联质谱 (Expedit-ICLMS) 技术
- 批准号:
10377355 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Wave-current interaction in the ocean surface layer; New perspective in its dynamics and global evaluation of resultant mixing
海洋表层的波流相互作用;
- 批准号:
19H01968 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Turbulence multi-scale interaction based on global stability of unsteady / nonequillibrium flow
基于非定常/非平衡流全局稳定性的湍流多尺度相互作用
- 批准号:
19K14880 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global mapping of metabolic genetic interaction networks using CRISPR-Cas screens to reveal novel cancer vulnerabilities and biomarkers
使用 CRISPR-Cas 屏幕绘制代谢遗传相互作用网络的全局图谱,以揭示新的癌症脆弱性和生物标志物
- 批准号:
383223 - 财政年份:2018
- 资助金额:
$ 23.02万 - 项目类别:
Development of protein function prediction methods with global substructures and interaction stochastic models
开发具有全局子结构和相互作用随机模型的蛋白质功能预测方法
- 批准号:
16K00392 - 财政年份:2016
- 资助金额:
$ 23.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The position of adverbials in German clause structure: on the interaction of global and specific constraints
状语在德语从句结构中的位置:论全局约束和特定约束的相互作用
- 批准号:
332805149 - 财政年份:2016
- 资助金额:
$ 23.02万 - 项目类别:
Research Grants