Algebraic Stacks
代数栈
基本信息
- 批准号:0970108
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research funded by the award will be directed towards several closely related questions and activities. A first part of the project is to build the theory of algebraic stacks from scratch, with the goal of writing foundations for algebraic stacks with a minimal amount of assumptions on the base scheme, no separation axioms for algebraic spaces, and no separation axioms for algebraic stacks. This will be continually documented online in the stacks project, see http://math.columbia.edu/algebraic_geometry/stacks-git. Many algebraic stacks are quotient stacks, but this is not always the case. A second component of the project involves the question of whether every algebraic stack is always etale locally a quotient stack. This is related to the question of whether the cohomological Brauer group and the classical Brauer group coincide for separated smooth algebraic spaces over a field. This leads into other questions, especially the relation between period and index for Brauer classes. A third part of the project is to see whether there exists a natural degree map on the group of zero cycles on a GIT-stack. And finally, the project includes a fourth part aimed at studying moduli of stacky curves, which is a natural explicit example of a higher algebraic stack. Throughout the PI will moderate the stacks project mentioned above.A question that has long fascinated physicists and philosophers is:What is space? For a mathematician a 3-dimensional manifold seems a good first approximation to space. After learning about special relativity a four dimensional space with a Lorentz metric seems closer. After learning about the standard model it seems that space comes endowed with certain vector bundles. And so on. In algebraic geometry students are taught early on that there are many different spaces, and that in fact the collection of all spaces forms itself some kind of space. A famous example is the moduli space of curves of genus g (Riemann surfaces) which is used by physicists in string theory. In a fundamental paper on moduli of curves in algebraic geometry, Deligne and Mumford pointed out that the space of curves has additional structure in that its points come endowed with certain finite groups (namely the automorphism groups of the corresponding curves). They coined the phrase "algebraic stack" to denote this type of space. It turns out that the language of algebraic stacks is an extremely useful tool in studying very classical objects such as vector bundles on curves and surfaces, moduli of elliptic curves and abelian varieties, etc, etc. The project will partly develop the foundations of algebraic stacks in a very general setting, and partly find new properties of these spaces, such as whether the finite groups attached to the points of an algebraic stack all in some natural way are contained in a single bigger group.
该奖项资助的研究将针对几个密切相关的问题和活动。该项目的第一部分是从头开始构建代数堆栈理论,目标是编写代数堆栈的基础,其中对基本方案的假设量最少,代数空间没有分离公理,代数堆栈没有分离公理。这将在stacks项目中持续在线记录,请参阅http://math.columbia.edu/algebraic_geometry/stacks-git。许多代数栈是商栈,但情况并非总是如此。该项目的第二个组成部分涉及的问题,是否每个代数栈总是局部etale商栈。这涉及到域上分离光滑代数空间的上同调Brauer群和经典Brauer群是否重合的问题。这导致了其他问题,特别是布劳尔类的周期和指数之间的关系。该项目的第三部分是查看GIT堆栈上的零循环组是否存在自然度映射。最后,该项目包括第四部分,旨在研究stacky曲线的模量,这是一个自然的显式例子,一个更高的代数堆栈。整个PI将主持上述堆栈项目。一个长期吸引物理学家和哲学家的问题是:什么是空间?对于数学家来说,三维流形似乎是空间的一个很好的近似。在学习了狭义相对论之后,具有洛伦兹度规的四维空间似乎更接近了。在学习了标准模型之后,空间似乎被赋予了某些向量丛。在代数几何中,学生们很早就被教导,有许多不同的空间,事实上,所有空间的集合本身就形成了某种空间。一个著名的例子是亏格g(黎曼曲面)曲线的模空间,物理学家在弦理论中使用它。在一个基本文件模的曲线在代数几何,德利涅和芒福德指出,空间的曲线有额外的结构,它的点来赋予某些有限的群体(即自同构群的相应曲线)。他们创造了“代数栈”这个短语来表示这种类型的空间。事实证明,代数栈的语言是一个非常有用的工具,在研究非常经典的对象,如曲线和曲面上的向量丛,椭圆曲线和阿贝尔簇的模等,该项目将部分发展代数栈的基础在一个非常一般的设置,并部分发现这些空间的新性质,例如,以某种自然方式连接到代数堆栈点的有限群是否包含在一个更大的群中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aise de Jong其他文献
Aise de Jong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aise de Jong', 18)}}的其他基金
The Stacks Project in Algebraic Geometry
代数几何中的 Stacks 项目
- 批准号:
1601160 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Perspectives on Complex Algebraic Geometry
复杂代数几何的观点
- 批准号:
1502166 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
- 批准号:
0554442 - 财政年份:2006
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Moduli of Azumaya algebras, vector bundles and applications
Azumaya 代数模、向量丛和应用
- 批准号:
0245203 - 财政年份:2003
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Birational Geometry and Rational Connectedness
双有理几何和有理关联
- 批准号:
0201423 - 财政年份:2002
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Reductive Group Actions and Their Invariants
还原群动作及其不变量
- 批准号:
9970165 - 财政年份:1999
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Curves Over Finite Fields and Deligne's Conjectures
有限域上的曲线和德利涅猜想
- 批准号:
9970049 - 财政年份:1999
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Applications of Moduli Spaces of Maps of Nodal Curves
节点曲线图模空间的应用
- 批准号:
9970101 - 财政年份:1999
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
Algebraic and Arithmetic Geometry via Stacks
通过堆栈学习代数和算术几何
- 批准号:
RGPIN-2022-02980 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Advances in Moduli Spaces and Algebraic Stacks
模空间和代数栈的进展
- 批准号:
1801976 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
The Stacks Project in Algebraic Geometry
代数几何中的 Stacks 项目
- 批准号:
1601160 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Algebraic stacks through the Tannakian perspective
从坦纳克视角看代数堆栈
- 批准号:
DE150101799 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Discovery Early Career Researcher Award
Advances in algebraic stacks and applications
代数栈和应用的进展
- 批准号:
DE140101519 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Discovery Early Career Researcher Award
Characteristic classes of algebraic stacks and application to enumerative problems
代数栈的特征类及其在枚举问题中的应用
- 批准号:
24340007 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)